16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90460/5 Series

MB90462/467/F462/F462A/F463A/V460

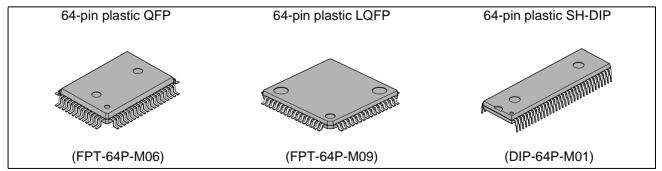
■ DESCRIPTION

The MB90460/5 series is a line of general-purpose, Fujitsu 16-bit microcontrollers designed for process control applications which require high-speed real-time processing, such as consumer products.

While inheriting the AT architecture of the F²MC^{*1} family, the instruction set for the F²MC-16LX CPU core of the MB90460/5 series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90460/5 series has an on-chip 32-bit accumulator which enables processing of long-word data.

The peripheral resources integrated in the MB90460/5 series include: an 8/10-bit A/D converter, UARTs (SCI) 0 to 1, 16-bit PPG timer, multi-functional timer (16-bit free-running timer, input capture units (ICUs) 0 to 3, output compare units (OCUs) 0 and 5, 16-bit PPG timer, waveform generator), multi-pulse generator (16-bit PPG timer*², 16-bit reload timer, waveform sequencer*²), PWC*² 0 to 1, 16-bit reload timer and DTP/external interrupt.

Notes: *1: F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.


*²: Multi-pulse generator and PWC 0 exist only in MB90460 series, ie, 16-bit PPG timer 1, waveform sequencer and PWC 0 are not present in MB90465 series (See section "■ BLOCK DIAGRAM").

■ FEATURES

- Minimum execution time: 62.5 ns / 4 MHz oscillation (uses PLL clock multiplication) maximum multiplier = 4
- Maximum memory space 16 Mbyte

Linear/bank access

(Continued)

- Instruction set optimized for controller applications
 Supported data types : bit, byte, word, and long-word types
 Standard addressing modes : 23 types
 32-bit accumulator enhancing high-precision operations
 Signed multiplication/division and extended RETI instructions
- Enhanced high level language (C) and multi-tasking support instructions Use of a system stack pointer
 Symmetrical instruction set and barrel shift instructions
- Program patch function (for two address pointers)
- Enhanced execution speed : 4 byte instruction queue
- Enhanced interrupt function Up to eight priority levels programmable External interrupt inputs: 8 lines
- Automatic data transmission function independent of CPU operation Up to 16 channels for the extended intelligent I/O service DTP request inputs: 8 lines
- Internal ROM FLASH : 64 Kbyte with flash security (MB90F462/F462A), 128Kbyte with flash security (MB90F463A) MASKROM : 64 Kbyte
- Internal RAM EVA : 8 Kbyte FLASH : 2 Kbyte MASKROM : 2 Kbyte
- General-purpose ports
 Up to 51 channels (input pull-up resistor settable for : 16 channels)
- A/D Converter (RC) : 8 channels 8/10-bit resolution selectable Conversion time : Min. 6.13 μs, 16 MHz operation
- UART : 2 channels
- 16-bit PPG : 3 channels (MB90460 series), 2 channels (MB90465 series) Mode switching function provided (PWM mode or one-shot mode) Can be worked with multi-functional timer, multi-pulse generator (MB90460 series only) or individually
- 16-bit reload timer : 2 channels
 Can be worked with multi-pulse generator (MB90460 series only) or individually
- 16-bit PWC timer : 2 channels (MB90460 series), 1 channel (MB90465 series)
- Multi-functional timer
 - Input capture : 4 channels Output compare with selectable buffer : 6 channels Free-running timer with up or up-down mode selection and selectable buffer: 1 channel 16-bit PPG : 1 channel Waveform generator : (16-bit timer : 3 channels, 3-phase waveform or dead time)
- Multi-pulse generator
 16-bit PPG : 1 channel (MB90460 series only)
 16-bit reload timer : 1 channel
 Waveform sequencer : (16-bit timer with buffer and compare clear function) (MB90460 series only)
- Timebase counter/watchdog timer : 18-bit

(Continued)

- Low-power consumption mode : Sleep mode Stop mode CPU intermittent operation mode
- Package : LQFP-64 (FPT-64P-M09 : 0.65 mm pitch) QFP-64 (FPT-64P-M06 : 1.00 mm pitch) SDIP-64 (DIP-64P-M01 : 1.78 mm pitch)
- CMOS technology

■ PRODUCT LINEUP

Part number	•									
	MB90V460	MB90F462	MB90F462A	MB90F463A	MB90462	MB90467				
Item										
Classification	Development / evaluation product		ced products ROM)							
ROM size	—	64K	Bytes	128K Bytes	64K	Bytes				
RAM size	8K Bytes			2K Bytes						
CPU function	Minimum execu Addressing mod Data bit length	Number of instruction: 351Minimum execution time: 62.5 ns / 4 MHz (PLL x 4)Addressing mode: 23Data bit length: 1, 8, 16 bitsMaximum memory space: 16 MBytes								
I/O port	I/O port (CMOS	5)	: 51							
	Pulse width cou	1 channel								
PWC	Various pulse w	idth measuring dge to rising ed	function (H pulse	ree internal clocl e width, L pulse v edge to rising e	vidth, rising edg					
UART	tively used	nized or clock s	ynchronized trar	nsmission (with s ommuication) or						
16-bit reload timer	Reload timer : 2 channels Reload mode, single-shot mode or event count mode selectable Can be worked with multi-pulse generator or individually (MB90460 series only)									
	PPG timer	2 channels								
16-bit PPG timer	PWM mode or s Can be worked vidually			i-pulse generato	r (MB90460 ser	ies only) or indi-				

Part number												
	MB90V460	MB90F462	MB90F462A	MB90F463A	MB90462	MB90467						
ltem												
timer	16-bit output co 16-bit input cap 16-bit PPG time	S-bit free-running timer with up or up-down mode selection and buffer: 1 channel S-bit output compare : 6 channels S-bit input capture : 4 channels S-bit PPG timer : 1 channel Vaveform generator (16-bit timer: 3 channels, 3-phase waveform or dead time)										
Multi-pulse generator 16-bit PPG timer : 1 channel Waveform sequencer (includes 16-bit timer with buffer and compare clear func- tion) N												
(for DC motor control)		ner operation (to unction		e-shot output se uilt-in	lectable)							
8/10-bit A/D converter	8/10-bit resolut Conversion tim			s (16 MHz intern	al clock)							
DTP/External interrupt	8 independent Selectable caus		: Rising edge	, falling edge, "L	" level or "H" lev	/el						
Low-power consumption	Stop mode / Sl	eep mode / CPL	J intermittent op	eration mode								
Package	PGA256	LQFP-64 (FPT-64P-M09 : 0.65 mm pitch) PGA256 QFP-64 (FPT-64P-M06 : 1.00 mm pitch) SDIP-64 (DIP-64P-M01 : 1.78 mm pitch)										
Power supply voltage for op- eration*		4.5 V to 5.5 V*										
Process			CN	10S								

* : Varies with conditions such as the operating frequency (See section "■ ELECTRICAL CHARACTERISTICS"). Assurance for the MB90V460 is given only for operation with a tool at a power supply voltage of 4.5 V to 5.5 V, an operating temperature of 0 to +25 °C, and an operating frequency of 1 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90V460	MB90F462	MB90F462A	MB90F463A	MB90462	MB90467
PGA256	0	Х	Х	Х	Х	Х
FPT-64P-M09	Х	0	0	0	0	0
FTP-64P-M06	Х	0	0	0	0	0
DIP-64P-M01	Х	0	0	0	0	0

 \bigcirc : Available

X : Not available

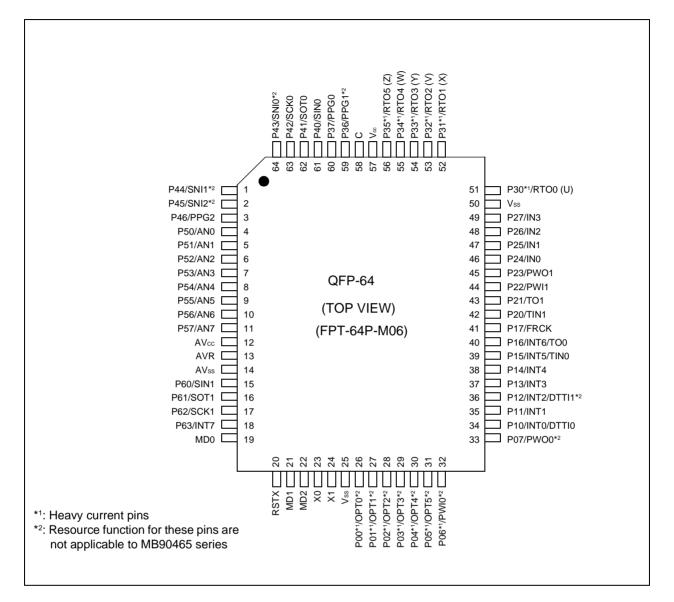
Note: For more information about each package, see section "■ PACKAGE DIMENSIONS".

DIFFERENCES AMONG PRODUCTS

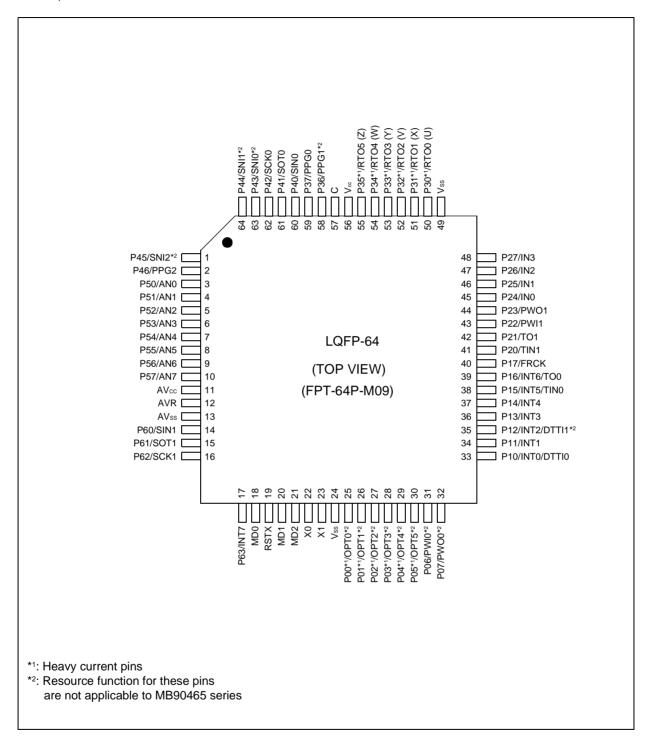
Memory Size

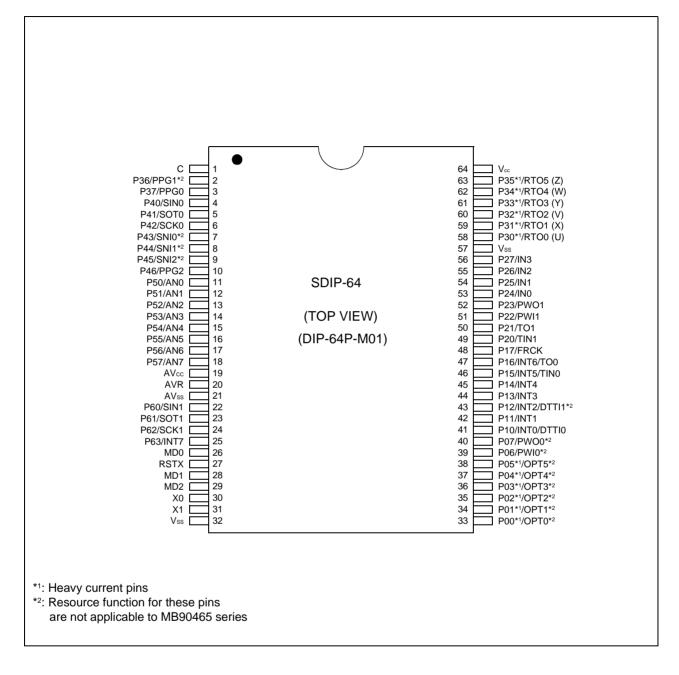
In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V460 does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V460, images from FF4000_H to FFFFFF_H are mapped to bank 00, and FE0000_H to FF3FFF_H are mapped to bank FF only. (This setting can be changed by configuring the development tool.)
- In the MB90462/467/F462/F462A/F463A, images from FF4000H to FFFFFFH are mapped to bank 00, and FF0000H to FF3FFFH are mapped to bank FF only.


Difference between MB90460 series and MB90465 series

• Waveform sequencer, 16-bit PPG timer 1, and PWC 0 are not present in MB90465 series.


Difference between MB90F462, MB90F462A and MB90F463A


 64Kbytes flash ROM is available in MB90F462 and MB90F462A while 128Kbytes flash ROM is available in MB90F463A.

■ PIN ASSIGNMENT

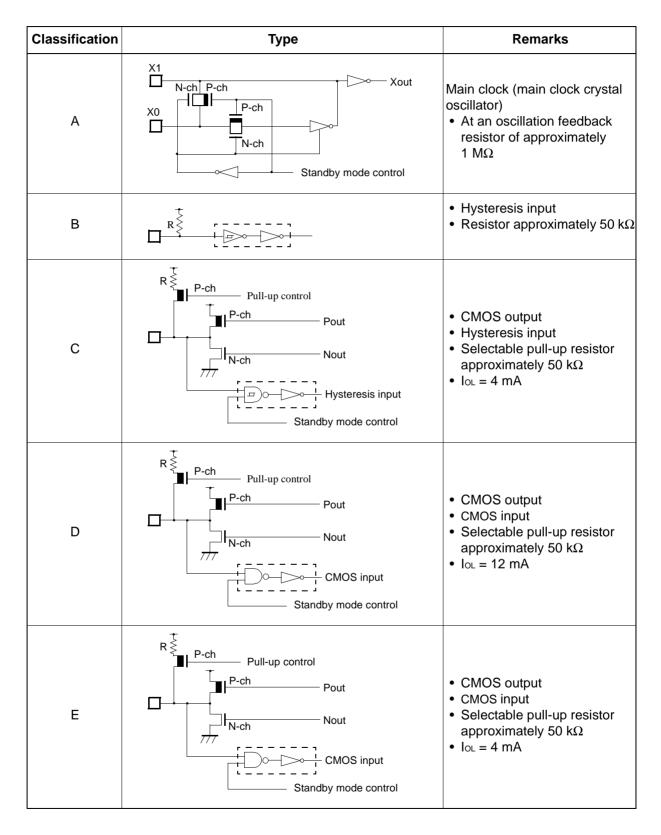
(Continued)

■ PIN DESCRIPTION

	Pin no.				Pin status	
LQFP- M09*1	QFP- M06* ²	SDIP*3	Pin name	I/O circuit	during reset	Function
22,23	23,24	30,31	X0,X1	А	Oscillating	Oscillation input pins.
19	20	27	RSTX	В	Reset input	External reset input pin.
			P00 ~ P05			General-purpose I/O ports.
25~30	26~31	33~38	OPT0 ~ OPT5*4	D		Output terminals OPT0~5 of the waveform sequencer. These pins output the waveforms specified at the output data registers of the waveform sequencer circuit. Output is generated when OPE0~5 of OPCR is enabled.
31	32	39	P06	E		General-purpose I/O ports.
51	52		PWI0*4			PWC 0 signal input pin.
32	33	40	P07	E		General-purpose I/O ports.
32		40	PWO0*4			PWC 0 signal output pin.
			P10			General-purpose I/O ports.
33	34~35	41~42	INT0	c		Can be used as interrupt request input channels 0. Input is enabled when 1 is set in EN0 in standby mode.
			DTTI0			RTO0~5 pins for fixed-level input. This function is enabled when the waveform generator enables its input bits.
			P11			General-purpose I/O ports.
34	35	42	INT1	С		Can be used as interrupt request input channels 1. Input is enabled when 1 is set in EN1 in standby mode.
			P12			General-purpose I/O ports.
35	36	43	INT2	c	Port input	Can be used as interrupt request input channels 2. Input is enabled when 1 is set in EN2 in standby mode.
55	50	40	DTTI1*4			OPT0~5 pins for fixed-level input. This function is enabled when the waveform sequencer enables its input bit.
			P13 ~ P14			General-purpose I/O ports.
36~37	37~38	44~45	INT3 ~ INT4	С		Can be used as interrupt request input channels 3 to 4. Input is enabled when 1 is set in EN3 to EN4 in standby mode.
			P15			General-purpose I/O ports.
38	39	46	INT5	с		Can be used as interrupt request input channel 5. Input is enabled when 1 is set in EN5 in standby mode.
			TIN0			External clock input pin for reload timer 0.
			P16			General-purpose I/O ports.
39	40	47	INT6	с		Can be used as interrupt request input channels 6. Input is enabled when 1 is set in EN6 in standby mode.
			TO0	1		Event output pin for reload timer 0.
40	4.4	40	P17	<u> </u>	1	General-purpose I/O ports.
40	41	48	FRCK	С		External clock input pin for free-running timer.
44	40	40	P20	F]	General-purpose I/O ports.
41	42	49	TIN1]		External clock input pin for reload timer 1.

	Pin no.				Pin status	
LQFP- M09*1	QFP- M06* ²	SDIP*3	Pin name	I/O circuit	during reset	Function
42	43	50	P21	F		General-purpose I/O ports.
42	43	50	T01			Event output pin for reload timer 1.
43	44	51	P22	F		General-purpose I/O ports.
43	44	51	PWI1			PWC 1 signal input pin.
44	45	52	P23	F		General-purpose I/O ports.
	-10	52	PWO1	I		PWC 1 signal output pin.
			P24 ~ P27			General-purpose I/O ports.
45~48	46~49	53~56	IN0 ~ IN3	F		Trigger input pins for input capture channels 0 to 3. When input capture channels 0 to 3 are used for input operation, these pins are enabled as required and must not be used for any other I/P.
			P30 ~ P35			General-purpose I/O ports.
50~55	51~56	58~63	RTO0 ~ RTO5	RTO0 ~ G Waveform generator output pins waveforms specified at the wave form generated when waveform genera		Waveform generator output pins. These pins output the waveforms specified at the waveform generator. Output is generated when waveform generator output is enabled.
			P36 ~ 37			General-purpose I/O ports.
58~59	59~60	2~3	PPG1* ⁴ , PPG0	Н		Output pins for PPG channels 1, 0. This function is enabled when PPG channels 1, 0 enable output.
			P40			General-purpose I/O ports.
60	61	4	SINO	F	Port input	Serial data input pin for UART channel 0. While UART channel 0 is operating for input, the input of this pin is used as required and must not be used for any other input.
			P41			General-purpose I/O ports.
61	62	5	SOT0	F		Serial data output pin for UART channel 0. This function is enabled when UART channel 0 enables data output.
			P42			General-purpose I/O ports.
62	63	6	SCK0	F		Serial clock I/O pin for UART channel 0. This function is enabled when UART channel 0 enables clock output.
			P43			General-purpose I/O ports.
63	64	7	SNI0*4	F		Trigger input pins for position detection of the waveform sequencer. When this pin is used for input operation, it is enabled as required and must not be used for any other I/P.
			P44			General-purpose I/O ports.
64	1	8	SNI1*4	F		Trigger input pins for position detection of the Multi-pulse generator. When this pin is used for input operation, it is enabled as required and must not be used for any other I/P.
			P45			General-purpose I/O ports.
1	2	9	SNI2*4	F		Trigger input pins for position detection of the Multi-pulse generator. When this pin is used for input operation, it is enabled as required and must not be used for any other I/P.
			P46		1	General-purpose I/O ports.
2	3	10	PPG2	F		Output pins for PPG channel 2. This function is enabled when PPG channel 2 enables output.

	Pin no.				Pin status	
LQFP- M09*1	QFP- M06* ²	SDIP*3	Pin name	I/O circuit	during reset	Function
			P50 ~ P57			General-purpose I/O ports.
3~10	4~11	11~18	AN0 ~ AN7	I	Analog input	A/D converter analog input pins. This function is enabled when the analog input specification is enabled (ADER).
11	12	19	AVCC	J		Vcc power input pin for analog circuits.
12	13	20	AVR	к	Power input	Vref+ input pin for the A/D converter. This voltage must not exceed AVcc. Vref- is fixed to AVss.
13	14	21	AVSS	J		Vss power input pin for analog circuits.
			P60			General-purpose I/O ports.
14	15	22	SIN1	F		Serial data input pin for UART channel 1. While UART channel 1 is operating for input, the input of this pin is used as required and must not be used for any other input.
			P61			General-purpose I/O ports.
15	16	23	SOT1	F	Port Input	Serial data output pin for UART channel 1. This function is enabled when UART channel 1 enables data output.
			P62			General-purpose I/O port.
16	17	24	SCK1	F		Serial clock I/O pin for UART channel 1. This function is enabled when UART channel 1 enables clock output.
			P63			General-purpose I/O port.
17	18	25	INT7	F		Usable as interrupt request input channel 7. Input is enabled when 1 is set in EN7 in standby mode.
18	19	26	MD0	L	• Mode input	Input pin for operation mode specification. Connect this pin directly to Vcc or Vss.
20,21	21,22	28,29	MD1,MD2	L		Input pin for operation mode specification. Connect this pin directly to Vcc or Vss.
24,49	25,50	32,57	Vss	-	Power input	Power (0 V) input pin.
56	57	64	Vcc	-		Power (5 V) input pin.


*1: FPT-64P-M09

*2: FPT-64P-M06

*3: DIP-64P-M01

*4: Pin names not applicable to MB90465 series

■ I/O CIRCUIT TYPE

Classification	Туре	Remarks
F	Pout Pout N-ch N-ch Hysteresis input Standby mode control	 CMOS output Hysteresis input Io∟ = 4 mA
G	Pout Pout N-ch N-ch CMOS input Standby mode control	 CMOS output CMOS input Io∟ = 12 mA
Н	Pout Pout N-ch N-ch CMOS input Standby mode control	 CMOS output CMOS input IoL = 4 mA
I	Pout Pout N-ch Nout Analog input Analog input	 CMOS output CMOS input Analog input Io_L = 4 mA
J	IN IN IN IN IN IN IN	 Power supply input protection circuit

Classification	Туре	Remarks			
к	Analog input enable N-ch IN Analog input enable Analog input enable	 A/D converter reference voltage (AVR) input pin with protection circuit 			
L		 Hysteresis input 			

■ HANDLING DEVICES

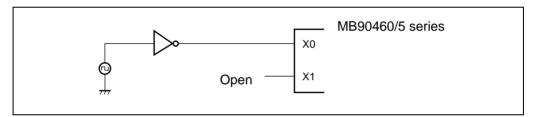
1. Preventing latch-up

CMOS ICs may cause latch-up in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- \bullet When AVcc power is supplied prior to the Vcc voltage.

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let it occur.

For the same reason, also be careful not to let the analog power-supply voltage exceed the digital power-supply voltage.


2. Handling unused input pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

3. Use of the external clock

When the device uses an external clock, drive only the X0 pin while leaving the X1 pin open (See the illustration below).

4. Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 µF between Vcc and Vss pin near the device.

5. Crystal oscillator circuit

Noise around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an ground area for stabilizing the operation.

6. Turning-on sequence of power supply to A/D converter and analog inputs

Make sure to turn on the A/D converter power supply (AVcc, AVss, AVR) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage of AVR dose not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of unused pins of A/D converter

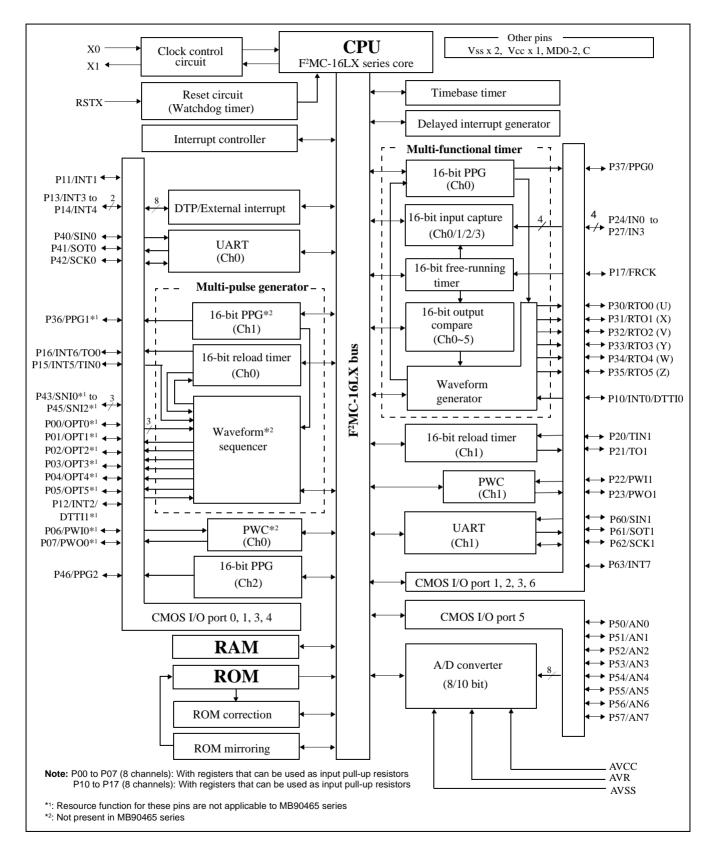
Connect unused pin of A/D converter to AVcc = Vcc, AVss = AVR = Vss.

8. N.C. pin

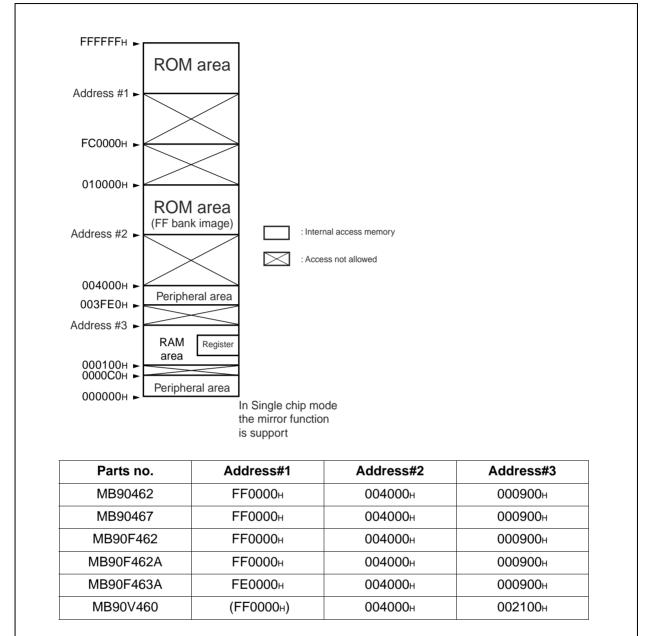
The N.C. (internally connected) pin must be opened for use.

9. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μs or more.


10. Initialization

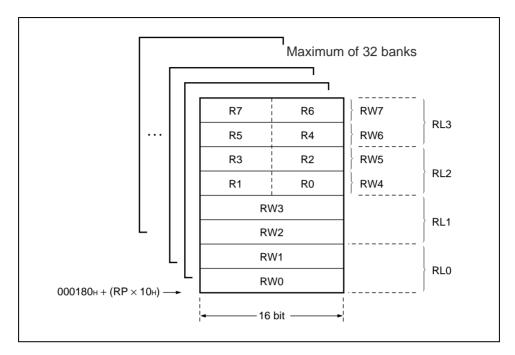
In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers turning on the power again.


11. Return from standby state

If the power supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.

BLOCK DIAGRAM

■ MEMORY MAP


Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit is assigned to the same address, enabling reference of the table on the ROM without stating "far". For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed actually. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFFH.

■ F²MC-16LX CPU PROGRAMMING MODEL

• Dedicated registers

AH	AL	: Accumlator (A) Dual 16-bit register used for storing results of calculation etc. The two 16-bit registers can be combined to be used as a 32-bit register.
	USP	: User stack pointer (USP) The 16-bit pointer indicating a user stack address.
	SSP	: System stack pointer (SSP) The 16-bit pointer indicating the status of the system stack address.
	PS	: Processor status (PS) The 16-bit register indicating the system status.
	PC	: Program counter (PC) The 16-bit register indicating storing location of the current instruction code.
	DPR	: Direct page register (DPR) The 8-bit register indicating bit 8 through 15 of the operand address in the short direct addressing mode.
	РСВ	: Program bank register (PCB) The 8-bit register indicating the program space.
	DTB	: Data bank register (DTB) The 8-bit register indicating the data space.
	USB	: User stack bank register (USB) The 8-bit register indicating the user stack space.
	SSB	: System stack bank register (SSB) The 8-bit register indicating the system stack space.
	ADB	: Additional data bank register (ADB) The 8-bit register indicating the additional data space.
32	2 bit	

• General-purpose registers

• Processor status (PS)

	ILM		RP				CCR										
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_
PS	ILM2	ILM1	ILMO	B4	В3	B2	B1	B0	_	I	S	т	Ν	z	V	С	
Initial value	0	0	0	0	0	0	0	0		0	1	Х	Х	Х	Х	Х	
	: Unuse : Undef																

■ I/O MAP

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
00000н	PDR0	Port 0 data register	R/W	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	R/W	Port 1	XXXXXXXX _B
000002н	PDR2	Port 2 data register	R/W	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	R/W	Port 4	-XXXXXXXB
000005н	PDR5	Port 5 data register	R/W	R/W	Port 5	XXXXXXXXB
000006н	PDR6	Port 6 data register	R/W	R/W	Port 6	XXXX _B
000007н		Prohib	ited area	1		
000008н	PWCSL0		R/W	R/W		0000000в
000009н	PWCSH0	PWC control status register CH0	R/W	R/W	-	0000000в
00000Ан	DIMOS			DAA	PWC timer (CH0)*	XXXXXXXXB
00000Вн	PWC0	PWC data buffer register CH0	-	R/W		XXXXXXXXB
00000Сн	DIV0	Divide ratio control register CH0	R/W	R/W		00в
00000Dн ~ 0Fн		Prohib	ited area	I		
000010н	DDR0	Port 0 direction register	R/W	R/W	Port 0	0000000в
000011н	DDR1	Port 1 direction register	R/W R/W Port 1		0000000в	
000012н	DDR2	Port 2 direction register	R/W	R/W	Port 2	0000000в
000013н	DDR3	Port 3 direction register	R/W	R/W	Port 3	0000000в
000014н	DDR4	Port 4 direction register	R/W	R/W	Port 4	-0000000в
000015н	DDR5	Port 5 direction register	R/W	R/W	Port 5	0000000в
000016н	DDR6	Port 6 direction register	R/W	R/W	Port 6	0000в
000017н	ADER	Analog input enable register	R/W	R/W	Port 5, A/D	11111111в
000018 _H		Prohib	ited area	I		
000019н	CDCR0	Clock division control register 0	R/W	R/W	Communication prescaler 0	00000в
00001Ан		Prohib	ited area			
00001Bн	CDCR1	Clock division control register 1	R/W	R/W	Communication prescaler 1	00000в
00001Cн	RDR0	Port 0 pull-up resistor setting register	R/W	R/W	Port 0	0000000в
00001Dн	RDR1	Port 1 pull-up resistor setting register	R/W	R/W	Port 1	0000000в
00001Eн ~ 1Fн		Prohib	ited area	1		
000020н	SMR0	Serial mode register 0	R/W	R/W		0000000в
000021н	SCR0	Serial control register 0	R/W	R/W		00000100в
000022н	SIDR0 / SODR0	Input data register 0 / Output data register 0 R/W R/W		UART0	XXXXXXXXB	
000023н	SSR0	Serial status register 0	R/W	R/W		00001000в
000024н	SMR1	Serial mode register 1	R/W	R/W		0000000в
000025н	SCR1	Serial control register 1	R/W	R/W		00000100в
000026н	SIDR1 / SODR1	Input data register 1 / Output data register 1	R/W	R/W	UART1	XXXXXXXXB
000027н	SSR1	Status register 1	R/W	R/W		00001000в

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
000028н	PWCSL1		R/W	R/W		0000000в
000029н	PWCSH1	PWC control status register CH1	R/W	R/W		0000000в
00002Ан	DIVICA			-	PWC timer (CH1)	XXXXXXXX
00002Вн	PWC1	PWC data buffer register CH1	-	R/W		XXXXXXXX
00002Сн	DIV1	Divide ratio control register CH1	R/W	R/W		00в
00002Dн ~ 2Fн		Prohib	ited area			
000030н	ENIR	Interrupt / DTP enable register	R/W	R/W		0000000в
000031н	EIRR	Interrupt / DTP cause register	R/W	R/W	DTD/outornal intervent	XXXXXXXX
000032н	ELVRL	Request level setting register (lower byte)	R/W	R/W	DTP/external interrupt	0000000в
000033н	ELVRH	Request level setting register (higher byte)	R/W	R/W		0000000в
000034н	ADCS0	A/D control status register 0	R/W	R/W		0000000в
000035н	ADCS1	A/D control status register 1	R/W	R/W		0000000в
000036н	ADCR0	A/D data register 0	R	R	8/10-bit A/D converter	XXXXXXXX
000037н	ADCR1	A/D data register 1	R/W	R/W		00000-ХХв
000038н				_		11111111в
000039н	PDCR0	PPG0 down counter register	-	R		11111111в
00003Ан	20020					XXXXXXXX
00003Вн	PCSR0	PPG0 period setting register	-	W		XXXXXXXX
00003Сн	551174				16-bit PPG timer (CH0)	XXXXXXXX
00003Dн	PDUT0	PPG0 duty setting register	-	W		XXXXXXXX
00003EH	PCNTL0		R/W	R/W		000000в
00003Fн	PCNTH0	PPG0 control status register	R/W	R/W		0000000в
000040н	55054					11111111в
000041н	PDCR1	PPG1 down counter register	-	R		11111111в
000042н	50054					XXXXXXXX
000043н	PCSR1	PPG1 period setting register	-	W		XXXXXXXX
000044н					16-bit PPG timer (CH1)*	XXXXXXXX
000045н	PDUT1	PPG1 duty setting register	-	W		XXXXXXXX
000046н	PCNTL1		R/W	R/W		000000B
000047н	PCNTH1	PPG1 control status register	R/W	R/W		0000000в
000048н	DDCDC					11111111в
000049н	PDCR2	PPG2 down counter register	-	R		11111111в
00004Ан	Doopo					XXXXXXXX
00004BH	PCSR2	PPG2 period setting register	-	W		XXXXXXXX
00004Сн	00/170				16-bit PPG timer (CH2)	XXXXXXXX
00004Dн	PDUT2	PPG2 duty setting register	-	W		XXXXXXXX
00004Ен	PCNTL2		R/W	R/W		000000в
00004Fн	PCNTH2	PPG2 control status register	R/W	R/W		0000000в

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
000050н	THER			DAM		XXXXXXXX
000051н	TMRR0	16-bit timer register 0	-	R/W		XXXXXXXX
000052н				DAA		XXXXXXXXB
000053н	TMRR1	16-bit timer register 1	-	R/W		XXXXXXXXB
000054н	TMRR2	10 hit timer register 2		R/W	Moveform concretor	XXXXXXXXB
000055н	TWRRZ	16-bit timer register 2	-	K/VV	Waveform generator	XXXXXXX
000056н	DTCR0	16-bit timer control register 0	R/W	R/W		0000000в
000057н	DTCR1	16-bit timer control register 1	R/W	R/W		0000000в
000058н	DTCR2	16-bit timer control register 2	R/W	R/W		0000000в
000059н	SIGCR	Waveform control register	R/W	R/W		0000000в
00005Ан	CPCLRB /	Compare clear buffer register /	_	DAA		11111111в
00005Вн	CPCLR	Compare clear register (lower)	-	R/W		11111111в
00005Сн	TCDT	Timer dete register (lewer)	_	R/W	16-bit free-running timer	0000000в
00005Dн	ICDI	Timer data register (lower)	-	r./ v v		0000000в
00005Ен	TCCSL	Timer control status register (lower)	R/W	R/W		0000000в
00005Fн	TCCSH	Timer control status register (upper)	R/W	R/W		-000000в
000060н	IPCP0	Innut conturo dete register CLIO		R		XXXXXXX
000061н	IPCPU	Input capture data register CH0	-	ĸ		XXXXXXXX
000062н	IPCP1	Input capture data register CH1	_	R		XXXXXXXX
000063н	IFOFI		-	R.		XXXXXXXX
000064н	IPCP2	Input capture data register CH2		R		XXXXXXXX
000065н	IFGFZ		-	R.		XXXXXXXXB
000066н	IPCP3	Input conturo data registar CH2		R	16 bit input conture	XXXXXXXX
000067н	IFCF3	Input capture data register CH3	-	ĸ	16-bit input capture (CH0 ~ CH3)	XXXXXXXX
000068н	PICSL01	Input capture control status register 01 (lower)	R/W	R/W	(,	0000000в
000069н	PICSH01	PPG output control / Input capture control status register 01 (upper)	R/W	R/W		0000000в
00006Ан	ICSL23	Input capture control status register 23 (lower)	R/W	R/W		0000000в
00006Вн	ICSH23	Input capture control status register 23 (upper)	R	R		00в
00006Cн ~ 6Eн		Prohit	oited area	<u> </u>		
00006Fн	ROMM	ROM mirroring function selection register	W	W	ROM mirroring function	1в

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
000070н	OCCPB0/	Output compare buffer register / Output		DAA		XXXXXXXX
000071н	OCCP0	compare register 0	-	R/W		XXXXXXXX
000072н	OCCPB1 /	Output compare buffer register / Output		DAM		XXXXXXXXB
000073н	OCCP1	compare register 1	-	R/W		XXXXXXXXB
000074н	OCCPB2 /	Output compare buffer register / Output		DAA		XXXXXXXXB
000075н	OCCP2	compare register 2	-	R/W		XXXXXXXXB
000076н	OCCPB3 /	Output compare buffer register / Output		R/W		XXXXXXXXB
000077н	OCCP3	compare register 3	-	R/W		XXXXXXXXB
000078н	OCCPB4 /	Output compare buffer register / Output		DAA	Output compare	XXXXXXXXB
000079н	OCCP4	compare register 4	-	R/W	(CH0 ~ CH5)	XXXXXXXXB
00007Ан	OCCPB5 /	Output compare buffer register / Output		5.444		XXXXXXXXB
00007Вн	OCCP5	compare register 5	-	R/W		XXXXXXXXB
00007Сн	OCS0	Compare control register 0	R/W	R/W		0000000в
00007Dн	OCS1	Compare control register 1	R/W	R/W		-000000в
00007Ен	OCS2	Compare control register 2	R/W	R/W		0000000в
00007Fн	OCS3	Compare control register 3	R/W	R/W		-000000в
000080н	OCS4	Compare control register 4	R/W	R/W		0000000в
000081н	OCS5	Compare control register 5	R/W	R/W		-000000в
000082н	TMCSRL0	Timer control status register CH0 (lower)	R/W	R/W		0000000в
000083н	TMCSRH0	Timer control status register CH0 (upper)	R/W	R/W		0000в
000084н		16 bit timer register CH0 / 16-bit reload		DAM	16-bit reload timer (CH0)	XXXXXXXXB
000085н	TMR0 / TMRD0	register CH0	-	R/W		XXXXXXXXB
000086н	TMCSRL1	Timer control status register CH1 (lower)	R/W	R/W		0000000в
000087н	TMCSRH1	Timer control status register CH1 (upper)	R/W	R/W		0000в
000088н		16 bit timer register CH1 / 16-bit reload			16-bit reload timer (CH1)	XXXXXXXX
000089н	TMR1 / TMRD1	register CH1	-	R/W		XXXXXXXXB
00008Ан	OPCLR	Output control lower register	R/W	R/W		0000000в
00008Вн	OPCUR	Output control upper register	R/W	R/W		0000000в
00008Сн	IPCLR	Input control lower register	R/W	R/W		0000000в
00008Dн	IPCUR	Input control upper register	R/W	R/W	Waveform sequencer*	0000000в
00008Eн	TCSR	Timer control status register	R/W	R/W		0000000в
00008Fн	NCCR	Noise cancellation control register	R/W	R/W		0000000в
000090н ~ 9Dн		Prohit	pited area	<u> </u>		
00009Eн	PACSR	Program address detect control status register	R/W	R/W	Address match detection	0000000в
00009Fн	DIRR	Delayed interrupt cause / clear register	R/W	R/W	Delayed interrupt	Ов
0000A0н	LPMCR	Low-power consumption mode register	R/W	R/W	Low-power consumption	00011000в
0000A1н	CKSCR	Clock selection register	R/W	R/W	control register	11111100в
0000A2н ~ А7н		Prohit	pited area	<u> </u>		<u> </u>
0000A8н	WDTC	Watchdog control register	R/W	R/W	Watchdog timer	X-XXX111 _B
0000A9н	TBTC	Timebase timer control register	R/W	R/W	Timebase timer	100100в

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
0000AAн ~ ADн		Pro	hibited area			
0000AEH	FMCS	Flash memory control status register	R/W	R/W	Flash memory interface circuit	00010000в
0000AFH		Pro	hibited area			
0000В0н	ICR00	Interrupt control register 00	R/W	R/W		00000111в
0000B1н	ICR01	Interrupt control register 01	R/W	R/W		00000111в
0000B2н	ICR02	Interrupt control register 02	R/W	R/W		00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W	R/W		00000111в
0000B4 _H	ICR04	Interrupt control register 04	R/W	R/W		00000111в
0000B5н	ICR05	Interrupt control register 05	R/W	R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W	R/W		00000111в
0000B7н	ICR07	Interrupt control register 07	R/W	R/W		00000111в
0000B8H	ICR08	Interrupt control register 08	R/W	R/W	Interrupt controller	00000111в
0000B9н	ICR09	Interrupt control register 09	R/W	R/W		00000111 _B
0000ВАн	ICR10	Interrupt control register 10	R/W	R/W		00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W	R/W		00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W	R/W		00000111e
0000BDн	ICR13	Interrupt control register 13	R/W	R/W	-	00000111e
0000ВЕн	ICR14	Interrupt control register 14	R/W	R/W		00000111в
0000BFн	ICR15	Interrupt control register 15	R/W	R/W		00000111 _B
0000C0н ~ FFн		Ex	ternal area			
001FF0н	PADRL0	Program address detection register 0 (lower byte)	R/W	R/W		xxxxxxx
001FF1н	PADRM0	Program address detection register 0 (middle byte)	R/W	R/W		xxxxxxx
001FF2н	PADRH0	Program address detection register 0 (higher byte)	R/W	R/W	Address match detection	xxxxxxx
001FF3⊦	PADRL1	Program address detection register 1 (lower byte)	R/W	R/W		xxxxxxx
001FF4н	PADRM1	Program address detection register 1 (middle byte)	R/W	R/W		xxxxxxx
001FF5н	PADRH1	Program address detection register 1 (higher byte)	R/W	R/W		xxxxxxx

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
003FE0н						0000000в
003FE1н	OPDBR0	Output data buffer register 0	-	R/W		0000000в
003FE2н	000004			DAA		0000000в
003FE3н	OPDBR1	Output data buffer register 1	-	R/W		0000000в
003FE4н		Output data buffar register 2				0000000в
003FE5⊦	OPDBR2	Output data buffer register 2	-	R/W		0000000в
003FE6н		Output data buffar register 2				0000000в
003FE7н	OPDBR3	Output data buffer register 3	-	R/W		0000000в
003F78н		Outrast data huffan na sistan 4				0000000в
003FE9н	OPDBR4	Output data buffer register 4	-	R/W		0000000в
003FEAн		Output data buffar register F		R/W		0000000в
003FEBH	OPDBR5	Output data buffer register 5	-	R/VV		0000000в
003FECH	ODEDDO	OPEBR6 Output data buffer register 6 - OPEBR7 Output data buffer register 7 - OPEBR8 Output data buffer register 8 -		R/W	Waveform sequencer*	0000000в
003FEDH	OFEBRO		-	r/w		0000000в
003FEEH	ODEDDZ			R/W		0000000в
003FEFH	OF EBR7		-	R/W		0000000в
003FF0H	OPEBR8					0000000в
003FF1н	OFEBRO		-			0000000в
003FF2H	OPEBR9	Output data buffer register 9	_	R/W	-	0000000в
003FF3⊦	OI EBI(9			1.7, 4.4		0000000в
003FF4⊦	OPEBRA	Output data buffer register A		R/W		0000000в
003FF5н	OFEBRA		-	IX/ VV		0000000в
003FF6H	OPEBRB	Output data buffor registor P		R/W		0000000в
003FF7н	OFEBRB	Output data buffer register B	-	r///		0000000в
003FF8 _H	OPDR	Output data register		R		XXXXXXXAB
003FF9н	OFDR		-	R.		0000XXXXB
003FFAн	CDCD	Compare clear register				XXXXXXXAB
003FFBH	CPCR	Compare clear register	-	R/W		XXXXXXXXB
003FFC _H	TMBR	Timor buffor register		R		0000000в
003FFDH	IWDK	Timer buffer register	-	Г		0000000в
003FFEH		·		·1		
∼ 003FFFн			Prohibited area			

- · Meaning of abbreviations used for reading and writing
 - R/W : Read and write enabled
 - R : Read-only
 - W : Write-only
- Explanation of initial values
 - 0 : The bit is initialized to 0.
 - 1 : The bit is initialized to 1.
 - X : The initial value of the bit is undefined.
 - : The bit is not used. Its initial value is undefined.
- Instruction using IO addressing e.g. MOV A, io, is not supported for registers area 003FE0H to 003FFFH.
- Note: For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results. For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.
- *: These registers are not present in MB90465 series

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	El ² OS	Ir	nterrup	t vector	Interr re	Priority		
	support	Number		Address	ICR	Address	- *2	
Reset	Х	#08	08н	FFFFDC H	-	-	High	
INT9 instruction	Х	#09	09н	FFFFD8н	-	-	∧	
Exception processing	Х	#10	0Ан	FFFFD4H	-	-		
A/D converter conversion termination	0	#11	0Вн	FFFFD0H		0000000 *1		
Output compare channel 0 match	0	#12	0Сн	FFFFCC H	ICR00	0000B0н ^{*1}		
End of measurement by PWC timer 0 / PWC timer 0 overflow*	0	#13	0DH	FFFFC8 _H	ICR01	0000B1н ^{*1}		
16-bit PPG timer 0	0	#14	0Ен	FFFFC4H				
Output compare channel 1 match	0	#15	0Fн	FFFFC0H	100.000	0000 D 0 #	_	
16-bit PPG timer 1*	0	#16	10н	FFFFBC H	ICR02	0000B2н*1		
Output compare channel 2 match	0	#17	11н	FFFFB8 _H	100000	000050 **	1	
16-bit reload timer 1 underflow	0	#18	12н	FFFFB4 _H	ICR03	0000B3н*1		
Output compare channel 3 match	0	#19	13н	FFFFB0 _H				
DTP/ext. interrupt channels 0/1 detection DTTI0	Ο Δ	#20	14н	FFFFACH	ICR04	0000B4H ^{*1}		
Output compare channel 4 match	0	#21	15н	FFFFA8 _H				
DTP/ext. interrupt channels 2/3 detection	0				ICR05	0000B5н*2		
DTTI1*	Δ	#22	16н	FFFFA4H				
Output compare channel 5 match	0	#23	17н	FFFFA0 _H			_	
End of measurement by PWC timer 1 / PWC timer 1 overflow	0	#24	18 н	FFFF9CH	ICR06	0000B6н ^{*1}		
DTP/ext. interrupt channels 4/5 detection	0	#25	19н	FFFF98⊦			_	
Waveform sequencer timer compare match / write timing*	0	#26	1Ан	FFFF94 _H	ICR07	0000B7H ^{*1}		
DTP/ext. interrupt channels 6/7 detection	0	#27	1Вн	FFFF90H				
Waveform sequencer position detect / compare interrupt*	0	#28	1Cн	FFFF8CH	ICR08	0000B8H ^{*1}		
Waveform generator 16-bit timer 0/1/2 underflow	Δ	#29	1Dн	FFFF88 _H	ICR09	0000B9н ^{*1}		
16-bit reload timer 0 underflow	0	#30	1Ен	FFFF84H		-		
16-bit free-running timer zero detect	Δ	#31	1Fн	FFFF80H	100.40	00005 4 **	1	
16-bit PPG timer 2	0	#32	20н	FFFF7C _H	ICR10	0000BAн*1		
Input capture channels 0/1	0	#33	21н	FFFF78⊦	100044	000000 **	1	
16-bit free-running timer compare clear	Δ	#34	22н	FFFF74 _H	ICR11	0000BBH*1		
Input capture channels 2/3	0	#35	23н	FFFF70н	100040	000000 **		
Timebase timer	Δ	#36	24н	FFFF6CH	ICR12	0000BCH*1		
UART1 receive	۲	#37	25н	FFFF68 _H	10040			
UART1 send	Δ	#38	26н	FFFF64H	ICR13	0000BDH*1		
UART0 receive	۲	#39	27н	FFFF60H	10544	0000055 **	1	
UART0 send	Δ	#40	28н	FFFF5CH	ICR14	0000BEн*1		
Flash memory status	Δ	#41	29н	FFFF58⊦	105.45	0000055 **	\neg	
Delayed interrupt generator module	Δ	#42	2Ан	FFFF54⊦	ICR15	0000BFн*1	Low	

 \odot : Can be used and support the EI2OS stop request.

O : Can be used and interrupt request flag is cleared by EI2OS interrupt clear signal.

X : Cannot be used.

 Δ : Usable when an interrupt cause that shares the ICR is not used.

* : In MB90465 series, these resources are not present, therefore, interrupt not available.

■ PERIPHERAL RESOURCES

1. Low-power Consumption Control Circuit

The MB90460 series has the following CPU operating mode configured by selection of an operating clock and clock operation control.

Clock mode

PLL clock mode : A PLL clock that is a multiple of the oscillation clock (HCLK) frequency is used to operate the CPU and peripheral functions.

Main clock mode : The main clock, with a frequency one-half that of the oscillation clock (HCLK), is used to operate the CPU and peripheral functions. In main clock mode, the PLL multiplier circuit is inactive.

 CPU intermittent operation mode CPU intermittent operation mode causes the CPU to operate intermittently, while high-speed clock pulses are supplied to peripheral functions, reducing power consumption. In CPU intermittent operation mode, intermittent clock pulses are only applied to the CPU when it is accessing a register, internal memory, a peripheral function, or an external unit.

• Standby mode

In standby mode, the low power consumption control circuit stops supplying the clock to the CPU (sleep mode) or the CPU and peripheral functions (timebase timer mode), or stops the oscillation clock itself (stop mode), reducing power consumption.

PLL sleep mode

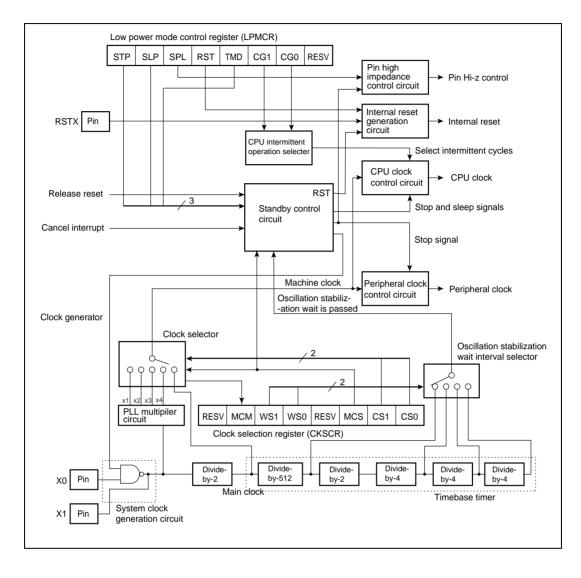
PLL sleep mode is activated to stop the CPU operating clock when the microcontroller enters PLL clock mode; other components continue to operate on the PLL clock.

Main sleep mode

Main sleep mode is activated to stop the CPU operating clock when the microcontroller enters main clock mode; other components continue to operate on the main clock.

- PLL timebase timer mode PLL timebase timer mode causes microcontroller operation, with the exception of the oscillation clock, PLL clock and timebase timer, to stop. All functions other than the timebase timer are deactivated.
- Main timebase timer mode

Main timebase timer mode causes microcontroller operation, with the exception of the oscillation clock, main clock and the timebase timer, to stop. All functions other than the timebase timer are deactivated.


• Stop mode

Stop mode causes the source oscillation to stop. All functions are deactivated.

(1) Register configuration

Clock Selection Registe	er 15	14	13	12	11	10	9	8 <=	Bit number
Address: 00000A1H	Reserved	МСМ	WS1	WS0	Reserved	MCS	CS1	CS0	CKSCR
Read/write ⊏>	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value 🖘	1	1	1	1	1	1	0	0	
Low-power Consumption	n Mode (7	Control Ro 6	egister 5	4	3	2	1	0 <=	Bit number
Address: 0000A0H	STP	SLP	SPL	RST	TMDX	CG1	CG0	Reserved	LPMCR
Read/write	> w	W	R/W	W	W	R/W	R/W	R/W	
Initial value 🖃	> 0	0	0	1	1	0	0	0	

(2) Block diagram

2. I/O Ports

(1) Outline of I/O ports

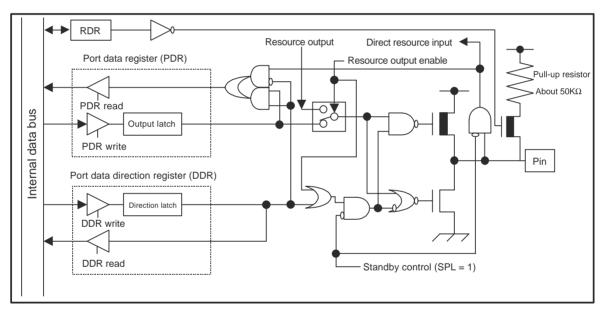
When a data register serving for control output is read, the data output from it as a control output is read regardless of the value in the direction register. Note that, if a read-modify-write instruction (such as a bit set instruction) is used to preset output data in the data register when changing its setting from input to output, the data read is not the data register latched value but the input data from the pin. Also note that, for port (other than Port 0, 1, 2 and 3) that is multiplexed with resource, use read-modify-write instruction may accidentally write unexpected value to the DDR and PDR register when resource is enabled.

Ports 0 to 4 and Port 6 are input/output ports which serve as inputs when the direction register value is "0" or as outputs when the value is "1". Port 5 are input/output ports as other port when ADER is 00_{H} .

(2) Register configuration

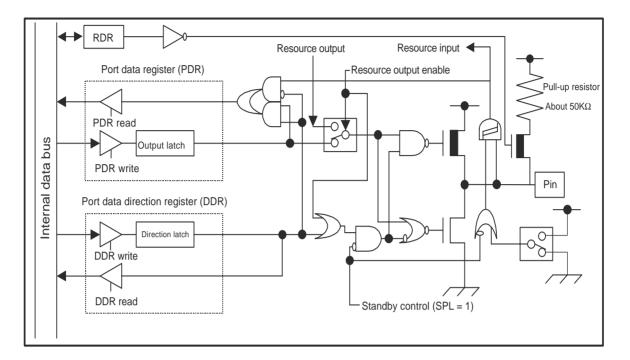
Port 0 Data Register	7	6	5	4	3	2	1	0	<> Bit number
	P07	P06	P05	P04	P03	P02	P01	P00	PDR0
 Read/write ⊏ Initial value ⊏		R/W X	J						
Port 1 Data Register	15	14	13	12	11	10	9	8	Bit number
Address: 000001н	P17	P16	P15	P14	P13	P12	P11	P10	PDR1
Read/write ⇒ Initial value ⇒	R/W X								
Port 2 Data Register	7	6	5	4	3	2	1	0	< Bit number
Address: 000002H	P27	P26	P25	P24	P23	P22	P21	P20	PDR2
Read/write 岸 Initial value ⊨	1 1/ 1 1	R/W X	-						
Port 3 Data Register	15	14	13	12	11	10	9	8	🗇 Bit number
Address: 000003н	P37	P36	P35	P34	P33	P32	P31	P30	PDR3
Read/write ⇔ Initial value ⇔	R/W X								
Port 4 Data Register	7	6	5	4	3	2	1	0	·<⊐ Bit number
Address: 000004н		P46	P45	P44	P43	P42	P41	P40	PDR4
Read/write ⊏ Initial value ∟		R/W X	_						
Port 5 Data Register	15	14	13	12	11	10	9	8	Bit number
Address: 000005н	P57	P56	P55	P54	P53	P52	P51	P50	PDR5
Read/write ⇔ Initial value ⇔	R/W X								
Port 6 Data Register	7	6	5	4	3	2	1	0	<⊐ Bit number
Address: 000006⊦					P63	P62	P61	P60	PDR6
Read/write ⊏ Initial value ∟		· 		· 	R/W X	R/W X	R/W X	R/W X	(Continue

(Continued)

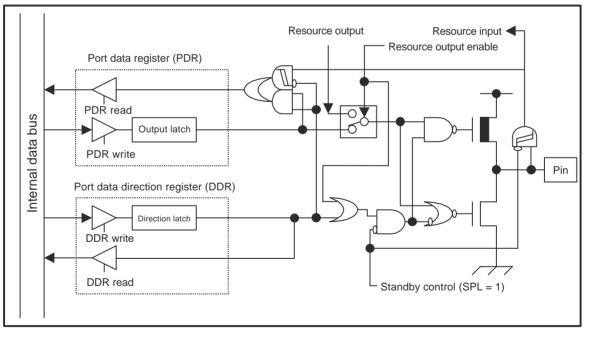

Port 0 Direction Register	7	6	5	4	3	2	1	0	<> Bit number
Address: 000010н	D07	D06	D05	D04	D03	D02	D01	D00	DDR0
 Read/write ⊨⇒ Initial value ⊨⇒		R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	-
Port 1 Direction Register	15	14	13	12	11	10	9	8 <	🗇 Bit number
Address: 000011 _H	D17	D16	D15	D14	D13	D12	D11	D10	DDR1
Read/write ⊨> Initial value ⊨>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Port 2 Direction Register	7	6	5	4	3	2	1	0	<> Bit number
Address: 000012 _H	D27	D26	D25	D24	D23	D22	D21	D20	DDR2
 Read/write ⇔ Initial value ⇔		R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	_
Port 3 Direction Register	15	14	13	12	11	10	9	8 <	<⊐ Bit number
Address: 000013н	D37	D36	D35	D34	D33	D32	D31	D30	DDR3
Read/write ⇔ Initial value ⇒	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Port 4 Direction Register	7	6	5	4	3	2	1	0	<> Bit number
Address: 000014н		D46	D45	D44	D43	D42	D41	D40	DDR4
 Read/write ⇔ Initial value ⇔		R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	_
Port 5 Direction Register	15	14	13	12	11	10	9	8 <	🗇 Bit number
Address: 000015н	D57	D56	D55	D54	D53	D52	D51	D50	DDR5
Read/write ⊏> Initial value ⊏>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	_
Port 6 Direction Register	7	6	5	4	3	2	1	0	<> Bit number
Address: 000016н					D63	D62	D61	D60	DDR6
Read/write ⊏ Initial value ⊏				·	R/W 0	R/W 0	R/W 0	R/W 0	-
Port 5 Analog Input Enab	le Regis 15	ter 14	13	12	11	10	9	8 <	⇔ Bit number
Address: 000017 _H	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	ADER
Read/write ⇔ Initial value ⇔	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	_
									(Continue

(Continued)

Port 0 Pull-up Resistor S	etting Re	egister 6	5	4	3	2	1	0	Bit number
-	1	0	5	-	5	2	1	0	
Address: 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	RDR0
Read/write ⊏	> R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial value 岸	> 0	0	0	0	0	0	0	0	
Port 1 Pull-up Resistor S	etting Re	egister							
	15	4.4	10	10	44	10	0	0	
	15	14	13	12	11	10	9	8 <	🗇 Bit number
Address: 00001D _H	15 RD17	14 RD16	13 RD15	12 RD14	11 RD13	10 RD12	9 RD11	8 < RD10	☐ Bit number
Address: 00001D⊦ Read/write ⇔ Initial value ⇒	RD17 R/W		-			-	-	- 1	

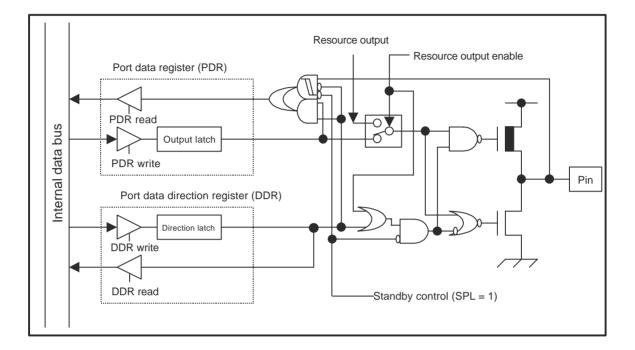

(3) Block diagram

• Block diagram of Port 0 pins

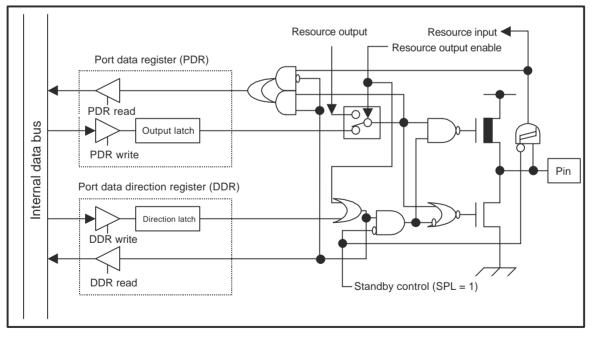


(Continued)

Block diagram of Port 1 pins

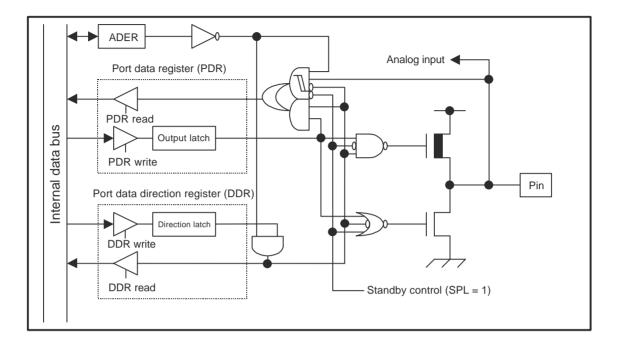


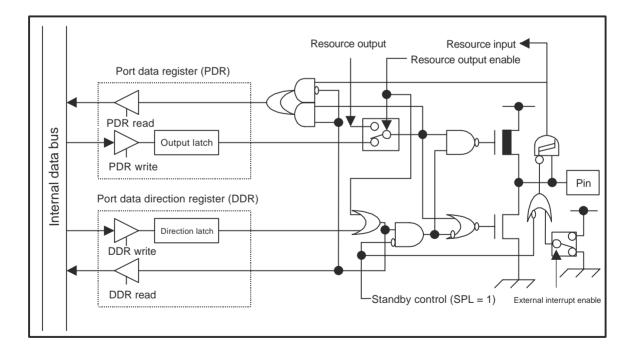
• Block diagram of Port 2 pins



(Continued)

Block diagram of Port 3 pins


• Block diagram of Port 4 pins


(Continued)

(Continued)

Block diagram of Port 5 pins

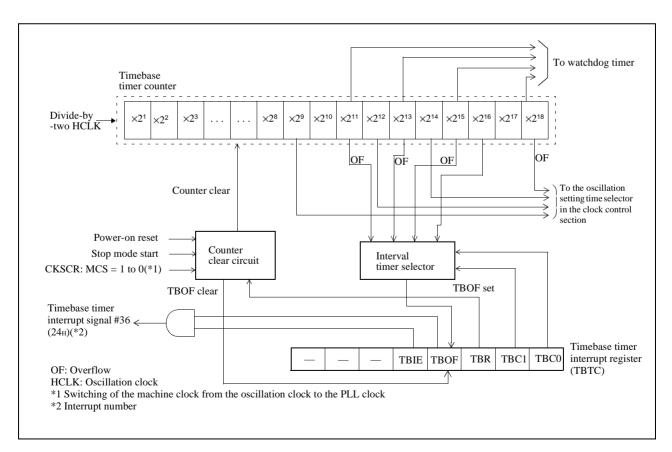
• Block diagram of Port 6 pins

3. Timebase Timer

The timebase timer is an 18-bit free-running counter (timebase counter) that counts up in synchronization with the internal count clock (one-half of the source oscillation).

Features of timebase timer :

- Interrupt generated when counter overflow
- El²OS supported
- Interval timer function:

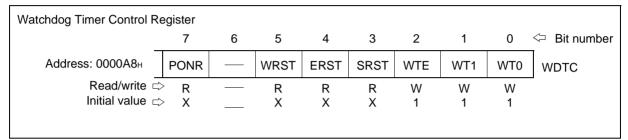

An interrupt generated at four different time intervals

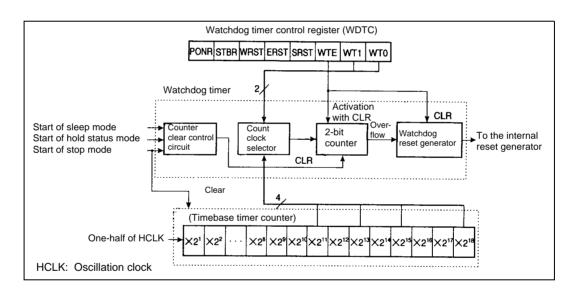
• Clock supply function:

Four different clock can be selected as watchdog timer's count clock Supply clock for oscillation stabilization

(1) Register configuration

Timebase Timer Control R	egister								
	15	14	13	12	11	10	9	8 <	🗇 Bit number
Address: 0000A9H	Reserved			TBIE	TBOF	TBR	TBC1	TBC0	TBTC
Read/write ⇔ Initial value ⇔				R/W 0	R/W 0	W 1	R/W 0	R/W 0	




4. Watchdog Timer

The watchdog timer is a 2-bit counter that uses the timebase timer's supply clock as the count clock. After activation, if the watchdog timer is not cleared within a given period, the CPU will be reset.

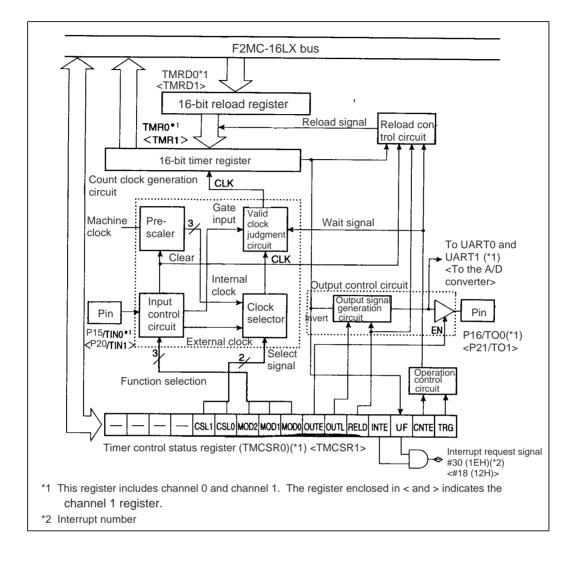
 Features of watchdog timer : Reset CPU at four different time intervals Status bits to indicate the reset causes

(1) Register configuration

5. 16-bit reload timer (x 2)

The 16-bit reload timer provides two operating mode, internal clock mode and event count mode. In each operating mode, the 16-bit down counter can be reloaded (reload mode) or stopped when underflow (one-shot mode).

Output pins TO1 ~ TO0 are able to output different waveform accroding to the counter operating mode. TO1 ~ TO0 toggles when counter underflow if counter is operated as reload mode. TO1 ~ TO0 output specified level (H or L) when counter is counting if the counter is in one-shot mode.


Features of the 16 bit reload timer :

- Interrupt generated when timer underflow
- El²OS supported
- Internal clock operating mode : Three internal count clocks can be selected Counter can be activated by software or external trigger (signal at TIN1 ~ TIN0 pin) Counter can be reloaded or stopped when underflow after activated
- Event count operating mode : Counter counts down by one when specified edge at TIN1 ~ TIN0 pin Counter can be reloaded or stopped when underflow

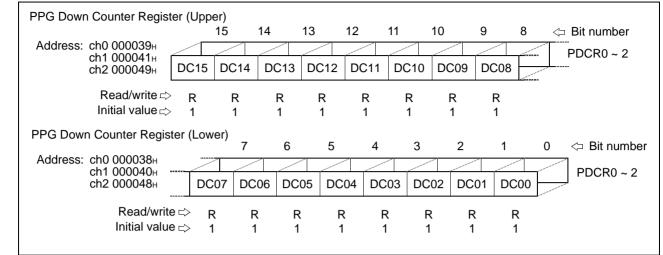
(1) Register configuration

16-bit Timer Register (Upper) 15 14 13 12 11 10 9 8 <⊐ Bit number
Address: ch0 000085н ch1 000089н D15 D14 D13 D12 D11 D10 D09 D08 TMRD0 ~ 1 / TMRD0 ~ 1
Read/writeR/WR/WR/WR/WR/WInitial value χ
16-bit Timer Register (Lower) 7 6 5 4 3 2 1 0 <> Bit number
Address: ch0 000084H ch1 000088H D07 D06 D05 D04 D03 D02 D01 D00 TMRD0 ~ 1 / TMRD0 ~ 1
Read/writeR/WR/WR/WR/WR/WInitial valueXXXXXX
Timer Control Status Register (Upper) 15 14 13 12 11 10 9 8 ⊲⊐ Bit number
Address: ch0 000083H ch1 000087H CSL1 CSL0 MOD2 MOD1TMCSRH0 ~ 1
Read/write ⇒ — — — R/W R/W R/W
Initial value ⇒ 0 0 0 0
Timer Control Status Register (Lower)76543210 \sim Bit number
Timor Control Status Pagistar (Lower)

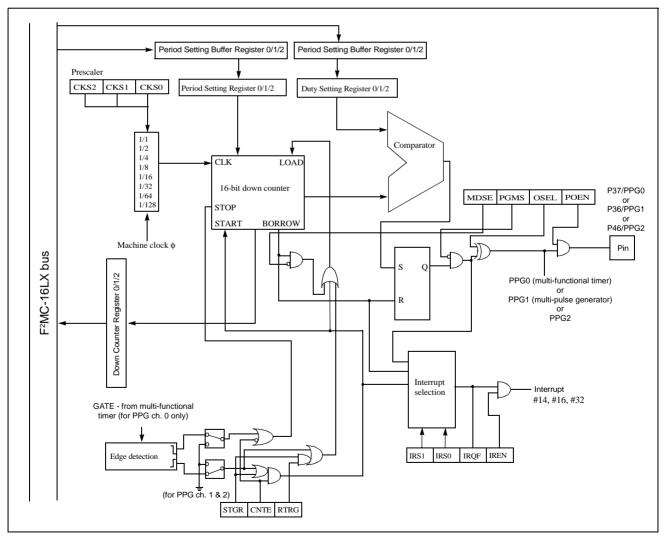
Note : Registers TMR0~1/TMRD0~1 are word access only.

6. 16-bit PPG Timer (x 3, PPG1 is not present in MB90465 series)

The 16-bit PPG timer consists of a 16-bit down counter, prescaler, 16-bit period setting register, 16-bit duty setting register, 16-bit control register and a PPG output pin. This module can be used to output pulses synchronized by software trigger or GATE signal from Multi-functional timer, refer to "Multi-functional Timer".


Features of 16-bit PPG timer :

- Two operating mode : PWM and One-shot
- 8 types of counter operation clock (ϕ , $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$) can be selected
- Interrupt is generated when trigger signal arrived, or counter borrow, or change of PPG output
- El²OS supported


(1) Register configuration

PPG Control Status Register (Upper) 15 14 13 12 11 10 9 8 \triangleleft Bit number
Address: ch0 00003F _H
ch1 000047H CNTE STGR MDSE RTRG CKS2 CKS1 CKS0 PGMS PCNTH0 ~ 2
Read/write ⊨> R/W R/W R/W R/W R/W R/W R/W R/W R/W
Read/write
PPG Control Status Register (Lower)
~ ´ ´ 7 6 5 4 3 2 1 0 ⊲⊐ Bit number
Address: ch0 00003EH ch1 000046H
ch2 00004EH — IREN IRQF IRS1 IRS0 POEN OSEL
Initial value \Rightarrow 0 0 0 0 0 0
PPG Duty Setting Register (Upper) ₁₅ 14 13 12 11 10 9 8 <⊐ Bit number
Address: ch0 00003D _H
ch1 000045н ch2 00004Dн DU15 DU14 DU13 DU12 DU11 DU10 DU09 DU08 PDUT0 ~ 2
Read/write \Rightarrow WWWWWWInitial value \Rightarrow XXXXXX
PPC Duty Setting Register (Lower)
Address: ch0 00003CH \sim Bit number
ch1 000044 _H PDUT0 ~ 2
ch2 00004CH DU07 DU06 DU05 DU04 DU03 DU02 DU01 DU00
Read/write ⊏>
Initial value \Rightarrow X X X X X X X X X
PPG Period Setting Register (Upper) 15 14 13 12 11 10 9 8 ⊲ Bit number
Address: ch0 00003BH
ch1 000043н ch2 00004Bн CS15 CS14 CS13 CS12 CS11 CS10 CS09 CS08 PCSR0 ~ 2
Read/write \Rightarrow WWWWWWInitial value \Rightarrow XXXXXX
PPG Period Setting Register (Lower) 7 6 5 4 3 2 1 0 \bigcirc Bit number Address: ch0 00003AH
ch1 000042н ch2 00004Ан CS07 CS06 CS05 CS04 CS03 CS02 CS01 CS00 PCSR0 ~ 2
C112 00004AH C307 C306 C303 C304 C303 C302 C301 C300
Read/write ⊨> W W W W W W W
Initial value $\Rightarrow X X X X X X X X X$
(Continue

(Continued)

Note : Registers PDCR0~2, PDSR0~2 and PDUT0~2 are word access only

7. Multi-functional Timer

The 16-bit multi-functional timer module consists of one 16-bit free-running timer, four input capture circuits, six output comparators and one channel of 16-bit PPG timer. This module allows six independent waveforms generated by PPG timer or waveform generator to be outputted. With the 16-bit free-running timer and the input capture circuit, input pulse width and external clock period measurement can be done.

(1) 16-bit free-running timer (1 channel)

- The 16-bit free-running timer consists of a 16-bit up/up-down counter, control register, 16-bit compare clear register (with buffer register) and a prescaler.
- 8 types of counter operation clock (φ, φ/2, φ/4, φ/8, φ/16, φ/32, φ/64, φ/128) can be selected. (φ is the machine clock)
- Two types of interrupt causes :

- Compare clear interrupt is generated when there is a comparing match with compare clear register and 16bit free-running timer.

- Zero detection interrupt is generated while 16-bit free-running timer is detected as zero in count value.

- El²OS supported.
- Compare-clear register buffer provided : The selectable buffer enables the 16-bit free-running timer update its compare-clear register automatically without stop the timer operation. User can read the next compare-clear value to the compare-clear register when the timer is running. The compare-clear register will be updated when the timer value is "0000H"
- Reset, software clear, compare match with compare clear register in up-count mode will reset the counter value to "0000H".
- Supply clock to output compare module : The prescaler ouptut is acted as the count clock of the output compare.

(2) Output compare module (6 channels)

- The output compare module consists of six 16-bit compare registers (with selectable buffer register), compare output latch and compare control registers. An interrupt is generated and output level is inverted when the value of 16-bit free-running timer and compare register are matched.
- 6 compare registers can be operated independently.
- Output pins and interrupt flag are corresponding to each compare register.
- 2 compare registers can be paired to control the output pins.
- Inverts output pins by using 2 compare registers together.
- Setting the initial value for each output pin is possible.
- Interrupt generated when there is a comparing match with output compare register and 16-bit free-running timer.
- El²OS supported.

(3) Input capture module (4 channels)

Input capture consists of 4 independent external input pins, the corresponding capture register and capture control register. By detecting any edge of the input signal from the external pin, the value of the 16-bit free-running timer can be stored in the capture register and an interrupt is generated simultaneously.

- Operations synchronized with the 16-bit free-running timer's count clock.
- 3 types of trigger edge (rising edge, falling edge and both edge) of the external input signal can be selected and there is indication bit to show the trigger edge is rising or falling.
- 4 input captures can be operated independently.
- Two independent interrupts are generated when detecting a valid edge from external input.
- El²OS supported.

(Continued)

(Continued)

(4) 16-bit PPG timer (x 1)

The 16-bit PPG timer 0 is used to provide a PPG signal for waveform generator. (See section "■ PERIPHERAL RESOURCES", "6. 16-bit PPG Timer")

(5) Waveform generator module

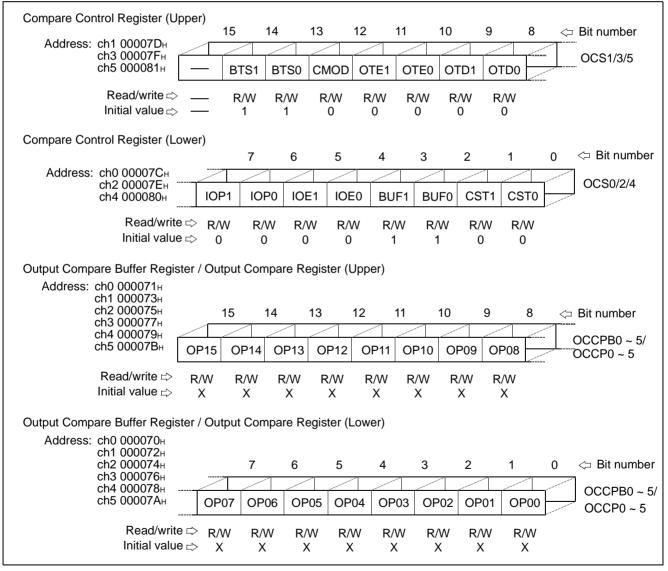
The waveform generator consists of three 16-bit timer registers, three timer control registers and 16-bit waveform control register.

With waveform generator, it is possible to generate real time output, 16-bit PPG waveform output, non-overlap 3-phase waveform output for inverter control and DC chopper waveform output.

- It is possible to generate a non-overlap waveform output based on dead-time of 16-bit timer. (Dead-time timer function)
- It is possible to generate a non-overlap waveform output when realtime output is operated in 2-channel mode. (Dead-time timer function)
- By detecting realtime output compare match, GATE signal of the PPG timer operation will be generated to start or stop PPG timer operation. (GATE function)
- When a match is detected by real time output compare, the 16-bit timer is activated. The PPG timer can be started or stopped easily by generating a GATE signal for PPG operation until the 16-bit timer stops. (GATE function)
- Force to stop output waveform using DTTI0 pin input.
- Interrupt is generated when DTTI0 active or 16-bit tmer underflow.
- El²OS supported.

(6) Register configuration

٠	16-bit	free-running	g timer	registers
---	--------	--------------	---------	-----------

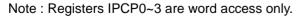

Timer Control Status Regis	ster (Upp	er)									
	15	14	13	12	11	10	9	8	Bit number		
Address: 00005FH	ECKE	IRQZF	IRQZE	MSI2	MSI1	MSI0	ICLR	ICRE	TCCSH		
Read/write ⇔ Initial value ⇔	1 1/ 1	R/W 0									
Timer Control Status Register (Lower)											
_	7	6	5	4	3	2	1	0	Git number Git number		
Address: 00005EH		BFE	STOP	MODE	SCLR	CLK2	CLK1	CLK0	TCCSL		
Read/write ⊏ Initial value ⊏		R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
Timer Data Register (Uppe	er) 15	14	13	12	11	10	9	8	<⊐ Bit number		
Address: 00005DH	T15	T14	T13	T12	T11	T10	T09	T08	TCDT		
Read/write ⇔ Initial value ⇔	1 1/ 1	R/W 0									
Timer Data Register (Lowe	r) 7	6	5	4	3	2	1	0	<□ Bit number		
Address: 00005CH	T07	T06	T05	T04	T03	T02	T01	тоо	TCDT		
 Read/write ⊏ Initial value ⊏	10.11	R/W	-								
	0	0	0	0	0	0	0	0			

(Continued)

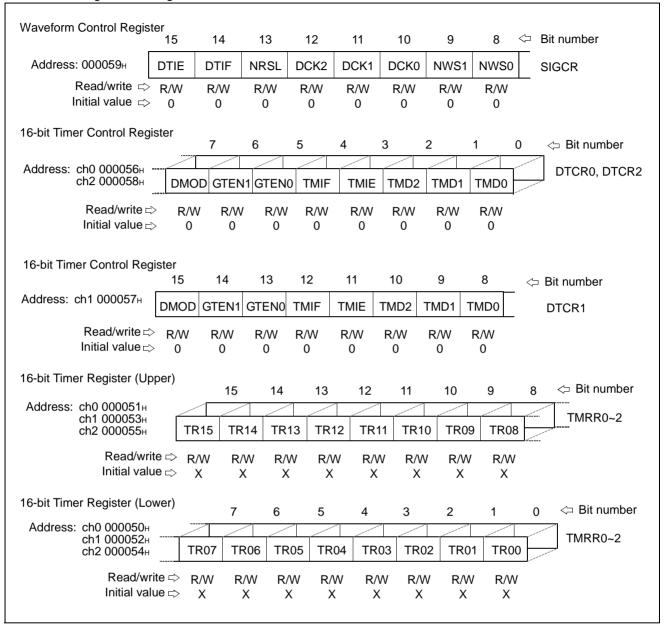
ontinued)												
Compare Clear Buffer Regi	Compare Clear Buffer Register / Compare Clear Register (Upper)											
	15	14	13	12	11	10	9	8 <	Bit number			
Address: 00005B⊦	CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08	CPCLRB/CPCLR			
Read/write ⇒ Initial value ⇒	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1				
Compare Clear Buffer Regi	ster / Co	mpare Cl	ear Regi	ster (Lov	ver)							
	7	6	5	4	3	2	1	0	<> Bit number			
Address: 00005AH	CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00	CPCLRB/CPCLF			
Read/write ⇨ Initial value ⇨	1 1/ 1/	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1				

Note : Registers TCDT, CPCLRB/CPCLR are word access only.

• Output compare registers

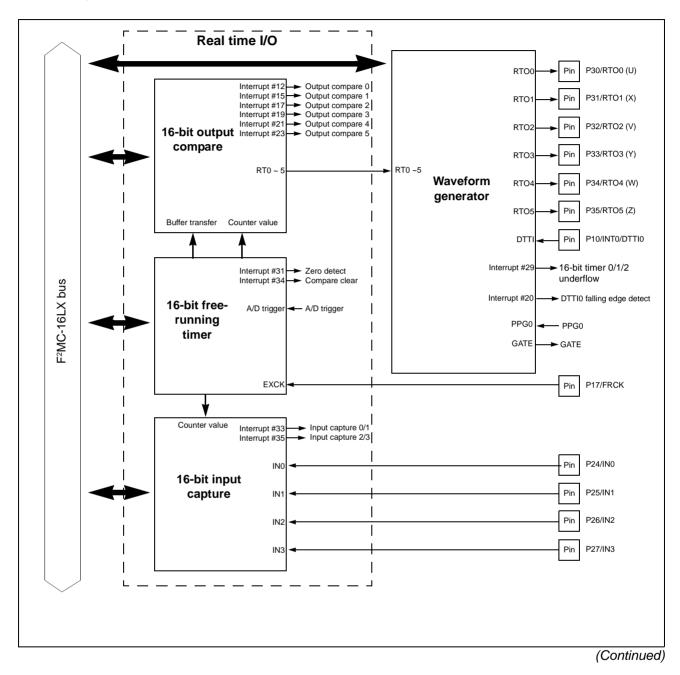


Note : Register OCCPB0~5/OCCP0~5 are word access only.

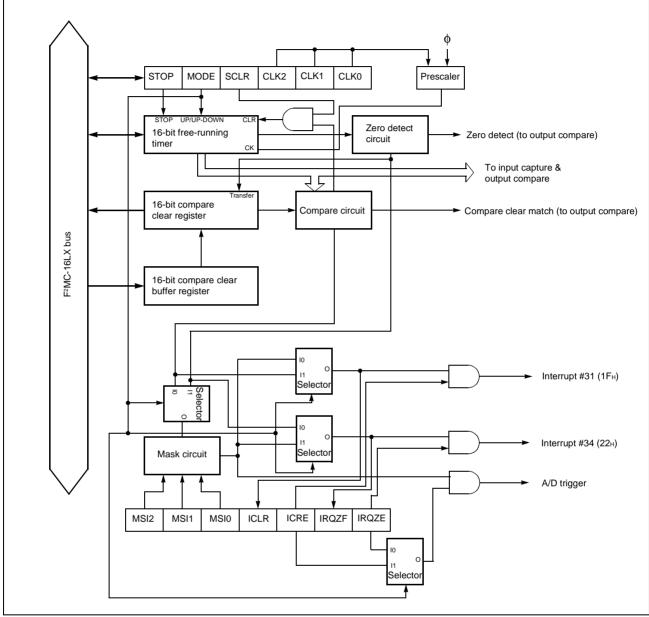

• Input capture registers

Input Capture Control Status	s Registe	er (2/3) (l	Jpper)						
	15	14	13	12	11	10	9	8 <	Bit number
Address: 00006BH	—			—			IEI3	IEI2	ICSH23
Read/write ⇔ Initial value ⇔	_	_	\equiv			_	R 0	R 0	
Input Capture Control Status	s Registe	er (2/3) (l	_ower)						
-	7	6	5	4	3	2	1	0 <	Bit number
Address: 00006Aн	ICP3	ICP2	ICE3	ICE2	EG31	EG30	EG21	EG20	ICSL23
Read/write ⇔ Initial value ⇔	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
PPG output control/ Input Ca	apture C 15	ontrol St	atus Reg 13	gister (0/1 12	l) (Upper 11	[.]) 10	9	8 <	□ Bit number
Address: 000069 _H F	PGEN5	PGEN4	PGEN3	PGEN2	PGEN1	PGEN0	IEI1	IEI0	- PICSH01
L Read/write ⇔ Initial value ⇔		R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R 0	R 0	-
Input Capture Control Regis	ter (0/1)								
-	7	6	5	4	3	2	1	0	<> Bit number
Address: 000068н	ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00	PICSL01
Read/write ⇔ Initial value ⇔	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Input Capture Data Register	(Upper))							
Address: ch0 000061н ch1 000063н ch2 000065н ch3 000067н	CP15	15 CP14	14 CP13		12 · CP11		0 9 CP09	8 CP08	<> Bit number IPCP0 ~ 3
Read/write ⇔ Initial value ⇔		R X	R X	R X	R X	R X	R X	R X	
Input Capture Data Register	(Lower))							
Address: ch0 000060н ch1 000062н ch2 000064н ch3 000066н	c	7 P07 CF	6 206 CF	5 205 CP	4 04 CP	3 03 CP0	2 2 CP0 ⁷	1 1 CP00	0
Read/wr Initial val				R R K X			R X	R X	

٦

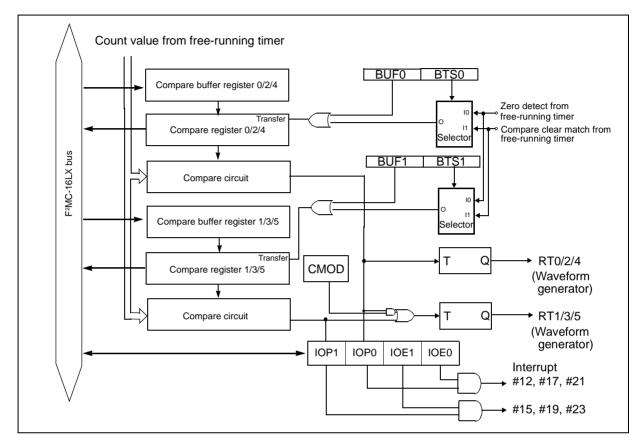

• Waveform generator registers

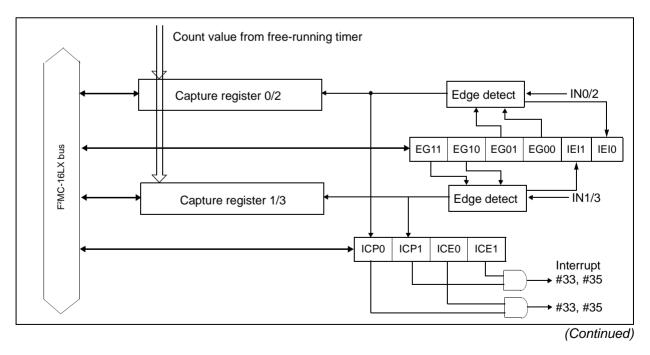
Note : Registers TMRR0 ~ 2 are word access only


(7) Block diagram

• Block diagram of Multi-functional timer

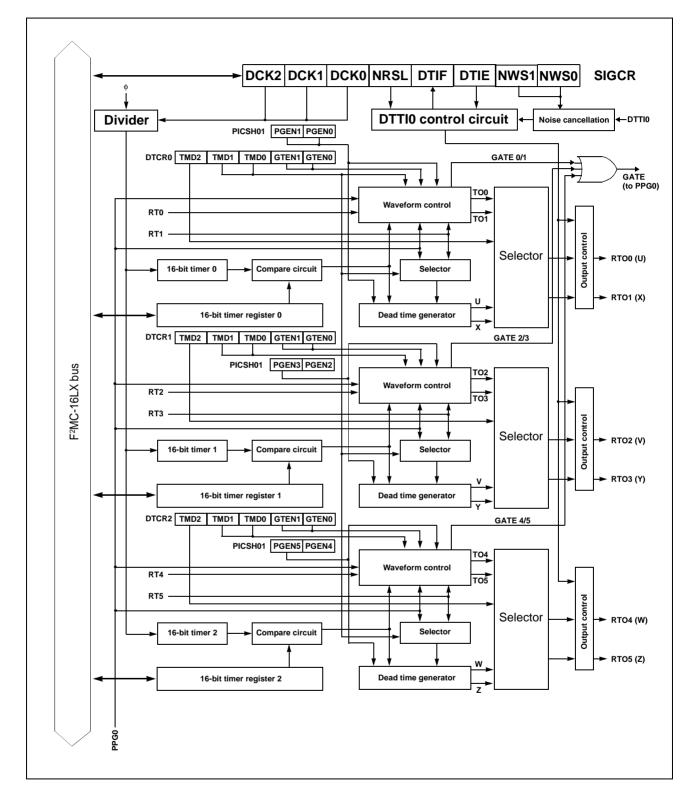
(Continued)


• Block diagram of 16-bit free-running timer



(Continued)

• Block diagram of 16-bit output compare



• Block diagram of 16-bit input capture

(Continued)

• Block diagram of waveform generator

8. Multi-pulse Generator (Not present in MB90465 series, but the 16-bit reload timer 0 can be used individually)

The Multi-pulse generator consists of a 16-bit PPG timer, a 16-bit reload timer and a waveform sequencer.

The Multi-pulse generator has the following features :

- Output signal control
 - 12 output data buffer registers are provided
 - Output data register can be updated by any one of output data buffer registers when :
 - 1. an effective edge detected at SNI2 ~ SNI0 pin
 - 2. 16-bit reload timer underflow
 - 3. output data buffer register OPDBR0 is written
- Output data register (OPDR) determines which OPT terminals (OPT5 ~ 0) output the 16-bit PPG waveform
 Waveform sequencer is provided with a 16-bit timer to measure the speed of motor
 - The 16-bit timer can be used to disable the OPT output when the position detection is missing
- Input position detect control
 - SNI2 ~ SNI0 input can be used to detect the rotor position
 - A controllable noise filter is provided to the SNI2 ~ SNI0 input
- PPG synchronization for output signal
 - OPT output is able to synchronize the edge of PPG waveform to avoid a short pulse (or glitch) appearance
- Various interrupt generation causes
- EI²OS supported

(1) 16-bit PPG timer (x 1, not present in MB90465 series)

The 16-bit PPG timer 1 is used to provide a PPG signal for waveform sequencer. (See section "■ PERIPHERAL RESOURCES", "6. 16-bit PPG Timer")

(2) 16-bit reload timer (x 1)

The 16-bit reload timer 0 is used to provide signal to waveform sequencer. (See section "■ PERIPHERAL RESOURCES", "5. 16-bit Reload Timer")

(3) Waveform sequencer (not present in MB90465 series)

By using the waveform sequencer, 16-bit PPG timer output signal can be directed to Multi-pulse generator output (OPT5 ~ 0) according to the input signal of Multi-pulse generator (SNI2 ~ 0). Meanwhile, the OPT5 ~ 0 output signal can be hardware terminated by DTTI input (DTTI1) in case of emergency. The OPT5 ~ 0 output signals are synchronized with the PPG signal in order to eliminate the unwanted glitch.

(4) Register configuration

Timer Buffer Register (L	Timer Buffer Register (Upper)											
	15	14	13	12	11	10	9	8	Bit number			
Address: 003FFDH	T15	T14	T13	T12	T11	T10	T09	T08	TMBR			
Read/Write 🛱	R	R	R	R	R	R	R	R				
Initial Value \Box	0	0	0	0	0	0	0	0				
Timer Buffer Register (L	ower)											
	7	6	5	4	3	2	1	0	Bit number			
Address: 003FFCH	T07	T06	T05	T04	T03	T02	T01	Т00	TMBR			
Read/Write 🟳	R	R	R	R	R	R	R	R				
Initial Value \Box	0	0	0	0	0	0	0	0				

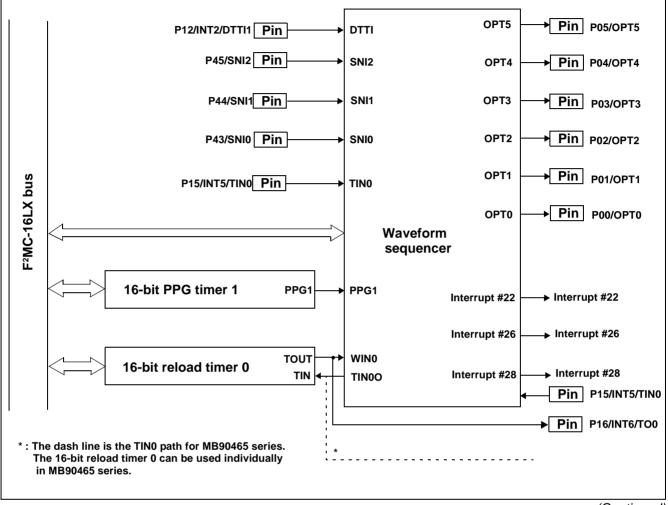
Note : Register TMBR is word access only.

(Continued)

Compare Clear Regis	ter (Upp 15	er) 14	13	12	11	10	9	8	Bit number
Address: 003FFB _H	CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08	_ CPCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial Value \Box	Х	Х	Х	Х	Х	Х	Х	Х	
Compare Clear Regis	ter (Low 7	er) 6	5	4	3	2	1	0	<⊐ Bit number
Address: 003FFAH	CLO		-						
Read/Write ⊑∕ Initial Value ⊑∕	R/V X	V R/\ X			V R/V X				-
Output Data Register	(Upper) 15	14	13	12	11	10	9	8	<⊐ Bit number
Address: 003FF9н				1		1	1	OP40	OPDR
Read/Write ⊑∕ Initial Value ⊑∕	R 0	R 0	R 0	R 0	R X	R X	R X	R X	
Output Data Register	(Lower) 7	6	5	4	3	2	1	0	<☐ Bit number
Address: 003FF8н	OP3							-	
Read/Write \Box	R				R				
Initial Value \Box	Х	Х	Х	Х	Х	Х	Х	Х	
Output Data Buffer Re	-	,		0	0 4		•	0	/
Addresses:		15 1	4 1	3 1	2 1	1 1	0	98	OPDBRB~0
003FF7н∼E1н (Odd Addresses)	BNKF	RDA2	RDA1	RDA0	OP51	OP50	OP41	OP40	
È Read/Write ⊑		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value \Box	0	0	0	0	0	0	0	0	
Output Data Buffer Re	egisters	```				_			
Addresses: 003FF6н~E0н (Even Addresses)	OP3	7 1 OP3	6 0 OP2	5 1 OP20	4 0 OP1 ⁻	3 1 OP10	2) OP0 ⁻	*****	0 (⊐ Bit number OPDBRB~0
Read/Write C	R/W 0	/ R/W 0	/ R/W 0	/ R/W 0	/ R/W 0	/ R/W 0	R/W 0	/ R/W 0	~

Note : Registers CPCR, OPDR, OPDBRB~0 are word access only

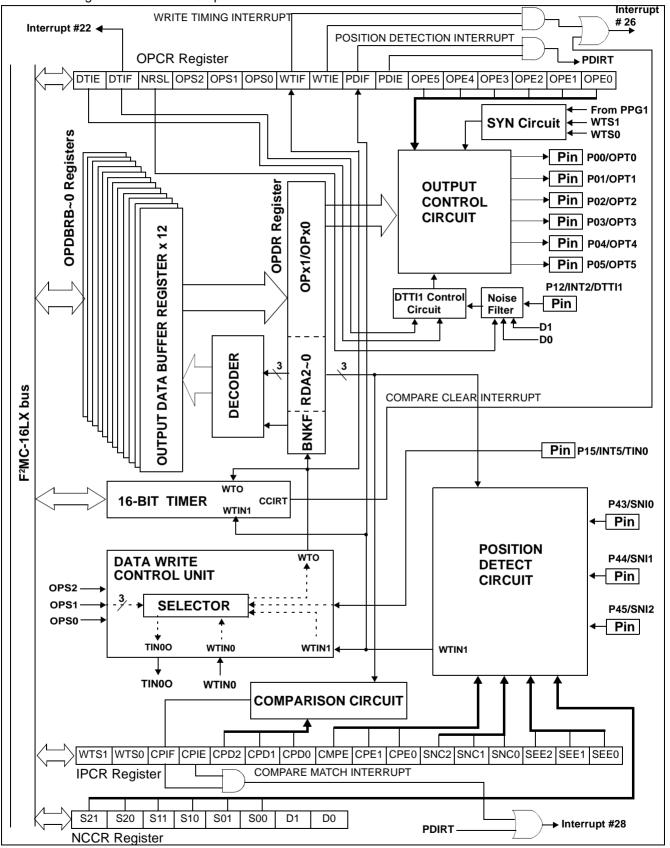
(Continued)


(Continued)

Noise Cancellation C	15	14	13	12	11	10	9	8	🟳 Bit number
Address: 00008FH	S21	S20	S11	S10	S01	S00	D1	D0	NCCR
Read/Write ⊏∕〉 Initial Value ⊏∕〉	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W I 0	R/W 0	R/W 0	-
Timer Control Status	-		_			•			
	7	6	5	4	3	2	1	0	Bit number
Address: 00008EH	TCL	R MOD	E ICLI	R ICRE	TMEN	CLK2	CLK1	I CLK0	TCSR
Read/Write	R/\						R/W		
Initial Value \Box	0	0	0	0	0	0	0	0	
Input Control Registe	r (Uppe	-)							
	15	14	13	12	11	10	9	8	🗘 Bit number
Address: 00008DH	WTS1	WTS0	CPIF	CPIE	CPD2 C	CPD1 C	PD0 C	CMPE	- IPCUR
Read/Write \Box	R/W	R/W	R/W				R/W	R/W	_
Initial Value \Box	0	0	0	0	0	0	0	0	
Initial Value			0	0	0	0	0	0	
Ÿ			0 5	0 4	0 3	0 2	0	0	☐ Bit number
Ÿ	er (Lowe	er) 6	5	4	3	2	1	0	<☐ Bit number IPCLR
Input Control Registe	er (Lowe 7	er) 6 1 CPE	5 0 SNC	4 2 SNC1	3	2	1	0	
Input Control Registe Address: 00008CH	er (Lowe 7 CPE	er) 6 1 CPE	5 0 SNC	4 2 SNC1	3 SNC0	2 SEE2	1 SEE1	0 SEE0	
Input Control Registe Address: 00008C _H Read/Write ⊏〉 Initial Value ⊏〉	er (Lowe 7 CPE R/V 0	r) 6 1 CPE V R/W 0	5 0 SNC 7 R/W	4 2 SNC1 / R/W	3 SNC0 R/W	2 SEE2 R/W	1 SEE1 R/W	0 SEE0 R/W	
Input Control Registe Address: 00008C _H Read/Write ⊏〉	er (Lowe 7 CPE R/V 0	r) 6 1 CPE V R/W 0	5 0 SNC 7 R/W	4 2 SNC1 / R/W	3 SNC0 R/W	2 SEE2 R/W	1 SEE1 R/W	0 SEE0 R/W	
Input Control Registe Address: 00008C _H Read/Write ⊏〉 Initial Value ⊏〉	er (Lowe 7 CPE R/V 0 ter (Upp	r) 6 1 CPE(7 V R/W 0 er)	5 0 SNC 7 R/W 0	4 2 SNC1 / R/W 0	3 SNC0 R/W 0 11	2 SEE2 R/W 0 10	1 SEE1 R/W 0	0 SEE0 R/W 0	IPCLR
Input Control Registe Address: 00008C⊢ Read/Write ⊑〉 Initial Value ⊑〉 Output Control Regist	er (Lowe 7 CPE R/V 0 ter (Upp 15	er) 6 1 CPE V R/W 0 er) 14	5 0 SNC 7 R/W 0 13	4 2 SNC1 / R/W 0 12	3 SNC0 R/W 0 11	2 SEE2 R/W 0 10	1 SEE1 R/W 0 9	0 SEE0 R/W 0 8	IPCLR
Input Control Registe Address: 00008CH Read/Write Initial Value Output Control Regist Address: 00008BH	er (Lowe 7 CPE R/V 0 ter (Upp 15 DTIE	er) 6 1 CPE 7 R/W 0 er) 14 DTIF	5 0 SNC 7 R/W 0 13 NRSL	4 2 SNC1 / R/W 0 12 OPS2	3 SNC0 R/W 0 11 OPS1	2 SEE2 R/W 0 10 OPS0	1 SEE1 R/W 0 9 WTIF	0 SEE0 R/W 0 8 WTIE	IPCLR
Input Control Registe Address: 00008CH Read/Write ☐> Initial Value ☐> Output Control Regist Address: 00008BH Read/Write ☐>	er (Lowe 7 CPE R/V 0 ter (Upp 15 DTIE R/W 0	er) 6 1 CPE 7 R/W 0 er) 14 DTIF R/W 0	5 0 SNC 7 R/W 0 13 NRSL R/W	4 2 SNC1 / R/W 0 12 12 OPS2 R/W	3 SNC0 R/W 0 11 OPS1 R/W	2 SEE2 R/W 0 10 OPS0 R/W	1 SEE1 R/W 0 9 WTIF R/W	0 SEE0 R/W 0 8 WTIE R/W	IPCLR
Input Control Register	er (Lowe 7 CPE R/V 0 ter (Upp 15 DTIE R/W 0	er) 6 1 CPE 7 R/W 0 14 0 14 0 R/W 0 er)	5 0 SNC 7 R/W 0 13 NRSL R/W	4 2 SNC1 / R/W 0 12 12 OPS2 R/W	3 SNC0 R/W 0 11 OPS1 R/W	2 SEE2 R/W 0 10 OPS0 R/W	1 SEE1 R/W 0 9 WTIF R/W	0 SEE0 R/W 0 8 WTIE R/W	IPCLR
Input Control Register	er (Lowe 7 CPE R/V 0 ter (Upp 15 DTIE R/W 0 ter (Low	er) 6 1 CPE 7 R/W 0 er) 14 DTIF R/W 0 er) 6	5 0 SNC 7 R/W 0 13 NRSL R/W 0 5	4 2 SNC1 / R/W 0 12 12 0PS2 R/W 0 4	3 SNC0 R/W 0 11 OPS1 R/W 0 3	2 SEE2 R/W 0 10 OPS0 R/W 0 2	1 SEE1 R/W 0 9 WTIF R/W 0 1	0 SEE0 R/W 0 8 WTIE R/W 0	IPCLR IPCLR I OPCUR
Input Control Registe Address: 00008CH Read/Write Initial Value Output Control Regist Address: 00008BH Read/Write Initial Value Output Control Regist	er (Lowe 7 CPE R/V 0 ter (Upp 15 DTIE R/W 0 ter (Low 7	er) 6 1 CPE 7 R/W 0 er) 14 0 14 0 0 er) 6 IF PDI	5 0 SNC 7 R/W 0 13 NRSL R/W 0 5 E OPE	4 2 SNC1 / R/W 0 12 OPS2 R/W 0 4 5 OPE4	3 R/W 0 11 OPS1 R/W 0 3 4 OPE3	2 R/W 0 10 OPS0 R/W 0 2 3 OPE2	1 SEE1 R/W 0 9 WTIF R/W 0 1 2 OPE	0 SEE0 R/W 0 8 WTIE R/W 0 0 1 OPE0	IPCLR

٦

(5) Block diagram


• Block diagram of Multi-pulse generator

(Continued)

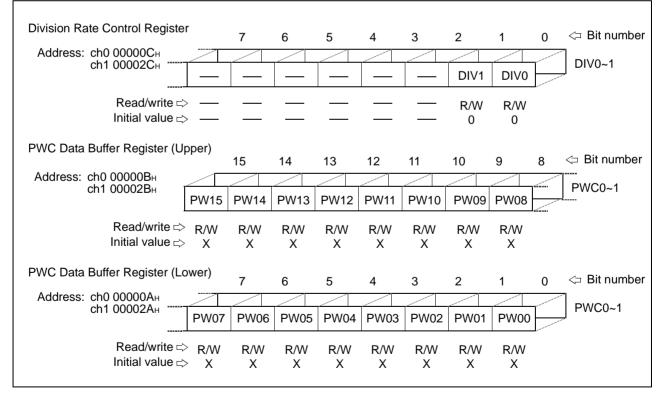
(Continued)

Block diagram of waveform sequencer

9. PWC Timer (x 2, PWC0 is not present in MB90465 series)

The PWC (pulse width count) timer is a 16-bit multi-functional up counter with reload timer functions and input signal pulse width count functions.

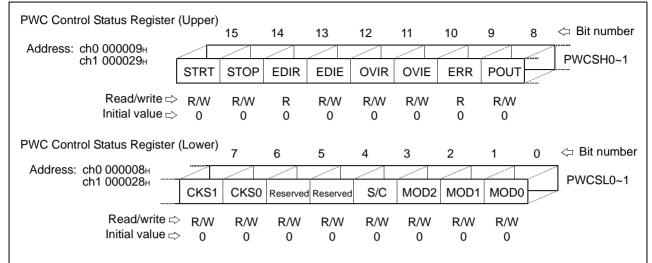
The PWC timer consists of a 16-bit counter, an input pulse divider, a division ratio control register, a count input pin, a pulse output pin, and a 16-bit control register.

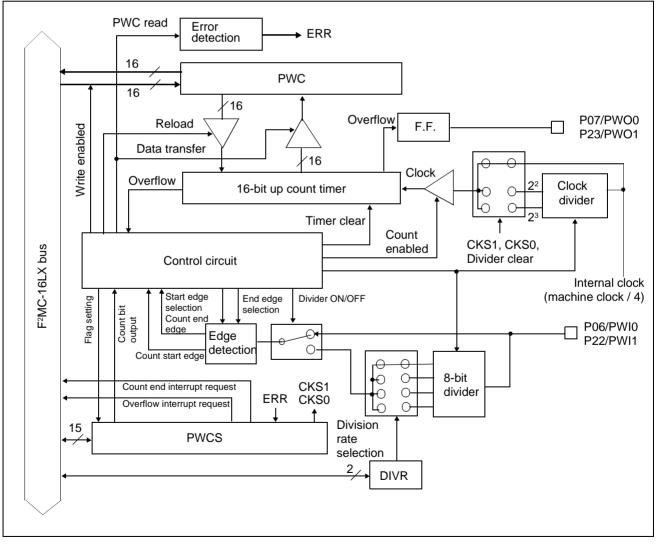

The PWC timer has the following features:

- Interrupt generated when timer overflow or end of PWC measurement.
- El²OS supported.
- Timer functions :
 - Generates an interrupt request at set time intervals.
 - Outputs pulse signals synchronized with the timer cycle.
 - Selects the counter clock from among three internal clocks.
- Pulse-width count functions:
 - Counts the time between external pulse input events.
 - Selects the counter clock from among three internal clocks.
 - Count mode:
 - H pulse width (rising edge to falling edge) / L pulse width (falling edge to rising edge)
 - Rising-edge cycle (rising edge to falling edge) / Falling-edge cycle (falling edge to rising edge)
 - Count between edges (rising or falling edge to falling or rising edge)

Capable of counting cycles by dividing input pulses by 2², 2⁴, 2⁶, 2⁸ using an 8-bit input divider. Generates an interrupt request upon the completion of count operation.

Selects single or consecutive count operation.


(1) Register configuration



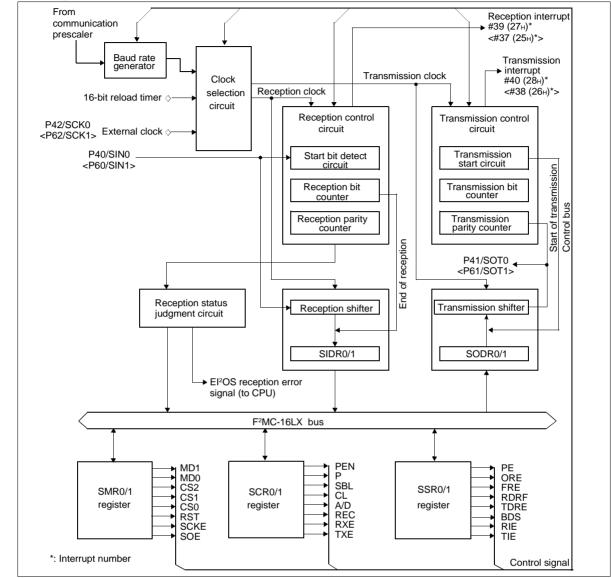
Note : Registers PWC0 ~ 1 are word access only.

(Continued)

(Continued)

10. UART (x 2)

The UART is a serial I/O port for asynchronous (start-stop) communication or clock-synchronous communication. The UART has the following features :


- Full-duplex double buffering
- · Capable of asynchronous (start-stop bit) and CLK-synchronous communications
- Support for the multiprocessor mode
- Various method of baud rate generation :
 - External clock input possible
 - Internal clock (a clock supplied from 16-bit reload timer can be used)
 - Embedded dedicated baud rate generator

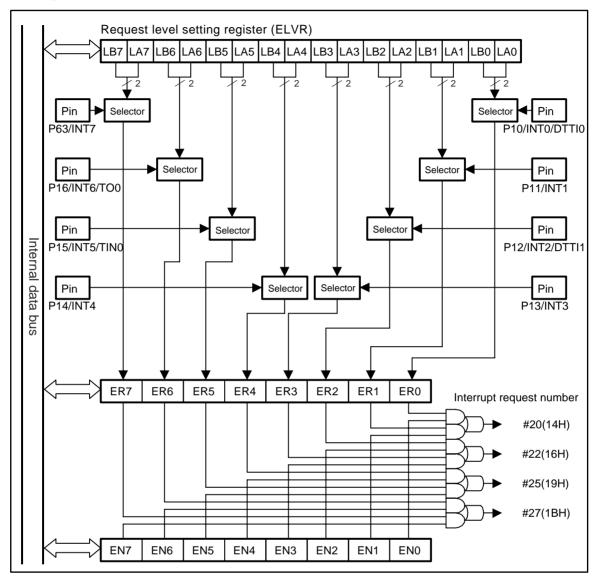
Operation	Baud rate
Asynchronous	31250/9615/4808/2404/1202 bps
CLK synchronous	2 M/1 M/500 K/250 K/125 K/62.5 Kbps

- *: Assuming internal machine clock frequencies of 6, 8, 10, 12, and 16 MHz
- Error detection functions (parity, framing, overrun)
- NRZ (Non Return to Zero) signal format
- Interrupt request :
 - Receive interrupt (receive complete, receive error detection)
 - Transmit interrupt (transmission complete)
 - Transmit / receive conforms to extended intelligent I/O service (EI2OS)

(1) Register configuration

Serial Status Register		15	14	10	10	44	10	0	8 <⊐ Bit number
Address: ch0 000023н		15	14	13	12	11	10	9	
ch1 000027⊦	PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE	SSR0~1
Read/write ⇔ Initial value ⇒	R 0	R 0	R 0	R 0	R 1	R/W 0	R/W 0	R/W 0	
Serial Input Data Register / Se	erial Out	-	-						
Address: ch0 000022н ch1 000026н	D7	7 D6	6 D5	5 D4	4 D3	3 D2	2 D1	1 D0	0
Read/write ⇔ Initial value ⇔	1 1/ 1	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	R/W X	-
Serial Control Register		15	14	13	12	11	10	9	8 <> Bit number
Address: ch0 000021⊦ ch1 000025⊦	PEN	P	SBL	CL	A/D	REC	RXE	TXE	SCR0~1
Read/write ⇔ Initial value ⊳	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	W 1	R/W 0	R/W 0	*
Serial Mode Register		7	6	5	4	3	2	1	0 <⊐ Bit number
Address: ch0 000020н ch1 000024н	MOD1		-	5 CS1	4 CS0	RST	SCKE	*****	SMR0~1
Read/write ⇔ Initial value ⇒	1.0, 4.4	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	_
Communication Prescaler Cor	ntrol Re	gister 15	14	13	12	11	10	9	8 <⊐ Bit number
Address: ch0 000019н ch1 00001Bн	MD					DIV2	DIV1	DIV0	CDCR0~1
Read/write ⇔ Initial value ⇒	R/W 0	_		_	_	R/W 0	R/W 0	R/W 0	

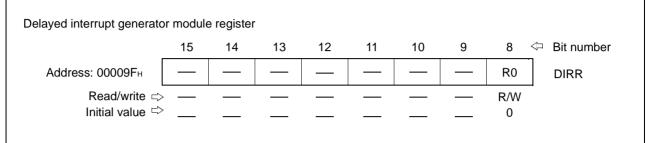
11. DTP/External Interrupts

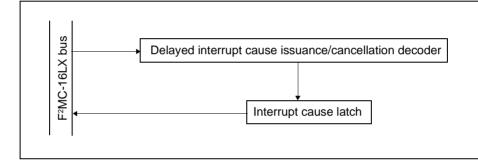

The DTP/external interrupt circuit is activated by the signal supplied to a DTP/external interrupt pin. The CPU accepts the signal using the same procedure it uses for normal hardware interrupts and generates external interrupts or activates the extended intelligent I/O service (EI²OS).

Features of DTP/External Interrupt :

- Total 8 external interrupt channels.
- Two request levels ("H" and "L") are provided for the intelligent I/O service.
- Four request levels (rising edge, falling edge, "H" level and "L" level) are provided for external interrupt requests.

(1) Register configuration


DTP/Interrupt Source Regis			4.0	10		4.0		• •	5
г	15	14	13	12	11	10	9	8 <	Bit number
Address: 0000031н	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	EIRR
Read/write ⇔ Initial value ⇔	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
DTP/Interrupt Enable Regis	ster 7	6	5	4	3	2	1	0 <=	Bit number
Address: 000030H	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	ENIR
Read/write d Initial value d	1.1/1/1	R/W 0							
Request Level Setting Reg	ister (Up	per)							
	15	14	13	12	11	10	9	8 <	Bit number
Address: 0000033H	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	ELVRH
Read/write ⊨> Initial value ⊨>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Request Level Setting Register (Lower)									
_	7	6	5	4	3	2	1	0 <=	Bit number
Address: 000032H	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	ELVRL
Read/write ⇔ Initial value ⇔		R/W 0							



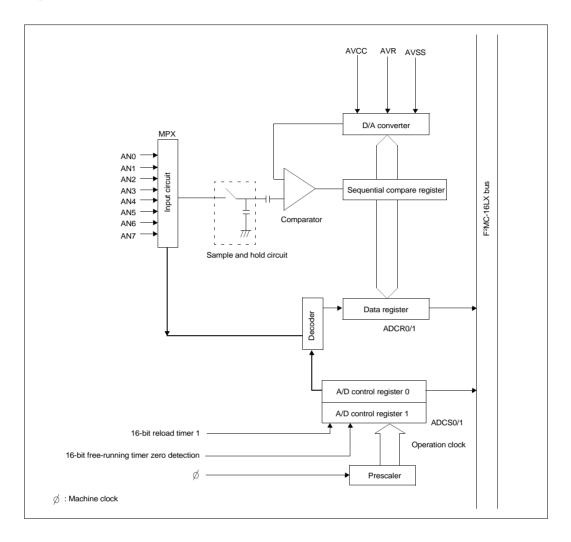
12. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate a task switching interrupt. Interrupt requests to the $F^2MC-16LX$ CPU can be generated and cleared by software using this module.

(1) Register configuration

13. A/D Converter

The converter converts the analog voltage input to an analog input pin (input voltage) to a digital value. The converter has the following features :


- The minimum conversion time is 6.13 μs (for a machine clock of 16 MHz; includes the sampling time).
- The minimum sampling time is 3.75 μs (for a machine clock of 16 MHz).
- The converter uses the RC-type successive approximation conversion method with a sample and hold circuit.
- A resolution of 10 bits or 8 bits can be selected.
- Up to eight channels for analog input pins can be selected by a program.
- Various conversion mode :
 - Single conversion mode : Selectively convert one channel.
 - Scan conversion mode : Continuously convert multiple channels. Maximum of 8 program selectable channels.
 - Continuous conversion mode : Repeatedly convert specified channels.

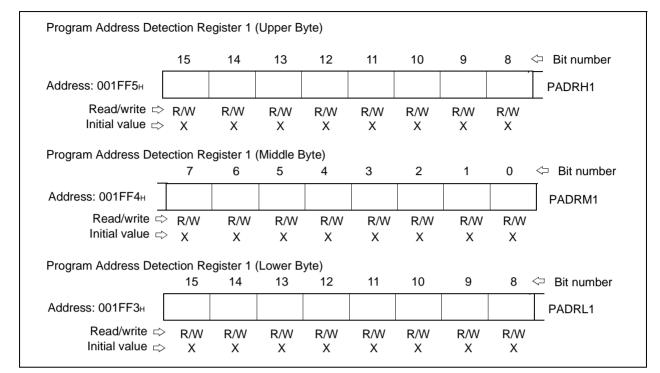
- Stop conversion mode : Convert one channel then halt until the next activation (enables synchronization of the conversion start timing).

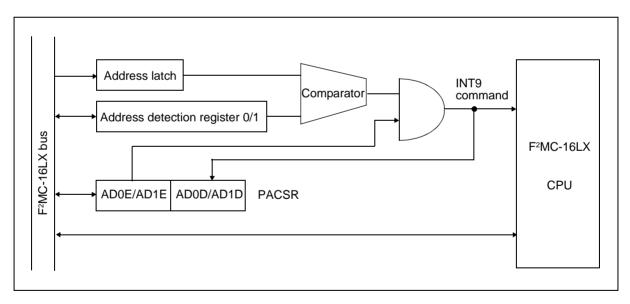
- At the end of A/D conversion, an interrupt request can be generated and EI²OS can be activated.
- In the interrupt-enabled state, the conversion data protection function prevents any part of the data from being lost through continuous conversion.
- The conversion can be activated by software, 16-bit reload timer 1 (rising edge) and 16-bit free-running timer zero detection edge.

(1) Register configuration

Control Status Register (upper)									
	15	14	13	12	11	10	9	8 <=	Bit number
Address: 0000035н	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	ADCS1
Read/write ⇔ Initial value ⇔	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	W 0		
Control Status Register (I	ower)								
_	7	6	5	4	3	2	1	0 <	Bit number
Address: 000034н	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	ADCS0
Read/write 너 Initial value 너	1.7.4.4	R/W 0							
A/D Data Register (upper) 15	14	13	12	11	10	9	8 <	⇔ Bit number
Address: 0000037 _H	S10	ST1	ST0	CT1	CT0		D9	D8	ADCR1
Read/write ⊏ Initial value ⊏	1.0, 4, 4	W 0	W 0	W 0	W 0		R X	R X	
A/D Data Register (lower)	7	6	5	4	3	2	1	0 <	⊐ Bit number
Address: 000036н	D7	D6	D5	D4	D3	D2	D1	D0	ADCR0
Read/write Initial value	· IX	R X	-						

14. ROM Correction Function

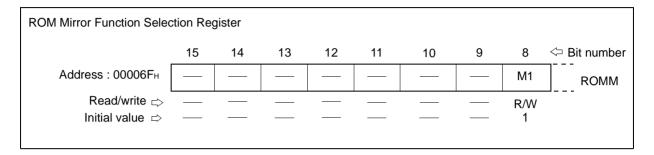

When an address matches the value set in the address detection register, the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code (01_{H}). When executing a set instruction, the CPU executes the INT9 instruction. The address match detection function is implemented by processing using the INT9 interrupt routine.

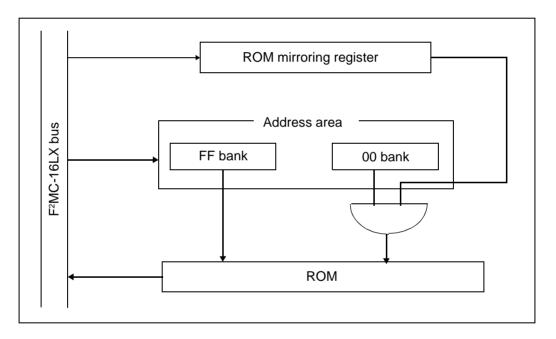

The device contains two address detection registers, each provided with a compare enable bit. When the value set in the address detection register matches an address and the interrupt enable bit is "1", the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code.

(1) Register configuration

	7	6	5	4	3	2	1	0	<⊐ Bit number
Address: 00009Eн					AD1E	AD1D	AD0E	AD0D	PADCSR
Read/write ⊏>					R/W	R/W	R/W	R/W	1
Initial value \Rightarrow		—	—		0	0	0	0	
Program Address Detec	tion Reg	gister 0 (I	Jpper By	rte)					
	7	6	5	4	3	2	1	0	<⊐ Bit number
Address: 001FF2H									PADRH0
Read/write 🔿	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial value 🖒	Х	Х	Х	Х	Х	Х	Х	Х	
Program Address Detec		-		-	44	10	0	0	Dit surshas
Program Address Detec Address: 001FF1н	tion Reg 15	gister 0 (l 14	Middle B <u>y</u> 13	vte) 12	11	10	9	8	← Bit number
-	15	-		-	11 R/W	10	9 R/W	8 R/W	PADRM0
Address: 001FF1 _H	15 > R/W	14	13	12					PADRM0
Address: 001FF1⊦ Read/write 岸	15 R/W X	14 R/W X	13 R/W X	12 R/W X	R/W	R/W	R/W	R/W	PADRM0
Address: 001FF1⊦ Read/write ≓ Initial value ≓	15 R/W X	14 R/W X	13 R/W X	12 R/W X	R/W	R/W	R/W	R/W	PADRM0
Address: 001FF1⊦ Read/write ≓ Initial value ≓	15 R/W X X	14 R/W X gister 0 (13 R/W X Lower B	12 R/W X yte)	R/W X	R/W X	R/W X	R/W X	PADRMO
Address: 001FF1⊦ Read/write ដ Initial value ដ Program Address Detec Address: 001FF0⊦ Read/write ⇔	15 > R/W > X ction Reg 7 R/W	14 R/W X gister 0 (13 R/W X Lower B	12 R/W X yte)	R/W X	R/W X	R/W X	R/W X	PADRM0
Address: 001FF1⊦ Read/write ≓ Initial value ≓ Program Address Detec Address: 001FF0⊦	15 > R/W > X ction Reg 7 R/W	14 R/W X gister 0 (6	13 R/W X Lower B 5	12 R/W X yte) 4	R/W X 3	R/W X 2	R/W X 1	R/W X 0	PADRM0

(Continued)



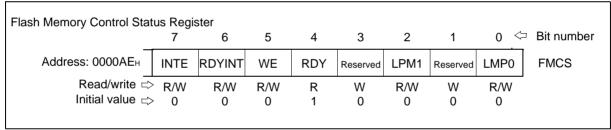


15. ROM Mirroring Function Selection Module

The ROM mirroring function selection module can select what the FF bank allocated the ROM and sees through the 00 bank according to register settings.

(1) Register configuration

16. 512/1024 Kbit Flash Memory


The 512 Kbit (MB90F462 and MB90F462A) or 1024 Kbit (MB90F463A) flash memory is allocated in the FE_H to FF_H banks on the CPU memory map. Like masked ROM, flash memory is read-accessible and program-accessible to the CPU using the flash memory interface circuit. The flash memory can be programmed/erased by the instruction from the CPU via the flash memory interface circuit. The flash memory can therefore be reprogrammed (updated) while still on the circuit board under integrated CPU control, allowing program code and data to be improved efficiently.

Note that sector operations such as "enable sector protect" cannot be used.

Features of 512/1024 Kbit flash memory

- 64K words x 8 bits/32K words x 16 bits (16K+8K+8K+32K) sector configuration for MB90F462/F462A
- 128K words x 8 bits/64K words x 16 bits (64K+16K+8K+8K+32K) sector configuration for MB90F463A
- Automatic program algorithm (same as the Embedded Algorithm* : MBM29F400TA)
- Installation of the deletion temporary stop/delete restart function
- Write/delete completion detected by the data polling or toggle bit
- Write/delete completion detected by the CPU interrupt
- Compatibility with the JEDEC standard-type command
- Each sector deletion can be executed (sectors can be freely combined)
- · Flash security feature
- Number of write/delete operations 10,000 times guaranteed.
- * : Embedded Algorithm is a trademark of Advanced Micro Devices, Inc.

(1) Register configuration

(2) Sector configuration of flash memory

The flash memory has the sector configuration illustrated below. The addresses in the illustration are the upper and lower addresses of each sector.

When 512 Kbit flash memory is accessed from the CPU, SA0 to SA3 are allocated in the FF bank registers.

Flash memory	CPU address	*Writer address
	FFFFF _H	7FFFF _H
SA3 (16 Kbytes)	FFC000 _H	7C000н
CA2 (8 Khytee)	FFBFFFH	7BFFF _H
SA2 (8 Kbytes)	FFA000 _H	7А000н
SA1 (8 Kbytes)	FF9FFF _H	79FFF _H
	FF8000 _H	78000 _H
SA0 (32 Kbytes)	FF7FFF _H	77FFF _H
	FF0000 _H	70000н

When 1024 Kbit flash memory is accessed from the CPU, SA0 and SA1 to SA4 are allocated in the FE and FF bank registers, respectively.

Flash memory	CPU address	*Writer address
CA4(16 K hyteo)	FFFFF _H	7FFFF _H
SA4 (16 Kbytes)	FFC000 _H	7С000 _Н
SA3 (8 Kbytes)	$FFBFFF_{H}$	7BFFF _H
	FFA000H	7A000 _H
SA2 (8 Kbytes)	FF9FFF _H	79FFF _H
	FF8000н	78000 _Н
SA1 (32 Kbytes)	FF7FFF _H	77FFF _H
	FF0000н	70000 _Н
SA0 (64 Kbytes)	FEFFFF _H	6FFFF _H
	FE0000 _H	60000 _Н

* : Programmer addresses correspond to CPU addresses when data is programmed in flash memory by a parallel programmer. Programmer addresses are used to program/erase data using a general-purpose programmer.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Paramatar	Symbol	Rat	ting	Unit	Remarks	
Parameter	Symbol	Min.	. Max.		Remarks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
Power supply voltage	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ AVcc *1	
	AVR	Vss - 0.3	Vss + 6.0	V	$AV_{CC} \ge AVR, AVR \ge AV_{ss}$	
Input voltage	VI	Vss - 0.3	Vss + 6.0	V	*2	
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*2	
"L" level maximum output current	lo∟		15	mA	*3	
"L" level average output current	OLAV		4	mA	Average output current = operating current × operating efficiency	
"L" level total maximum output current	ΣΙοι		100	mA		
"L" level total average output current	ΣΙοιαν		50	mA	Average output current = operating current × operating efficiency	
"H" level maximum output current	Іон		-15	mA	*3	
"H" level average output current	ЮНАУ		-4	mA	Average output current = operating current × operating efficiency	
"H" level total maximum output current	ΣІон		-100	mA		
"H" level total average output current	ΣΙοήαν		-50	mA	Average output current = operating current × operating efficiency	
Power consumption	PD		300	mW		
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1 : AVcc shall never exceed Vcc when power-on.

*2 : VI and Vo shall never exceed Vcc + 0.3 V.

*3 : The maximum output current is a peak value for a corresponding pin.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Deremeter	Symbol	Va	lue	Unit	Remarks			
Parameter	Symbol	Min.	Max.	Unit	i terriar 65			
	Vcc	3.0	5.5	V	Normal operation (MB90462, MB90467, MB90V460)			
Power supply voltage	VCC	4.5	5.5	V	Normal operation (MB90F462, MB90F462A, MB90F463A))			
Vollago	Vcc	3.0	5.5	V	Retains status at the time of operation stop			
Smoothing capacitor	Cs	0.1	1.0	μF	Use a ceramic capacitor or a capacitor with equivalent fre- quency characteristics. The smoothing capacitor to be con- nected to the V_{CC} pin must have a capacitance value higher than Cs.			
Operating temperature	TA	-40	+85	°C				

• C pin connection circuit C_{s} C_{s} C_{s} C_{s} T T

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

73

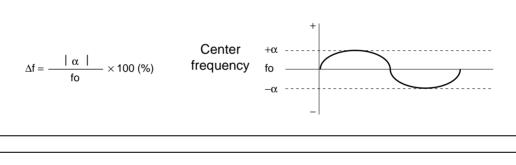
 $(V_{SS} = AV_{SS} = 0.0 V)$

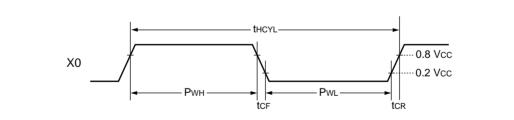
3. DC Characteristics

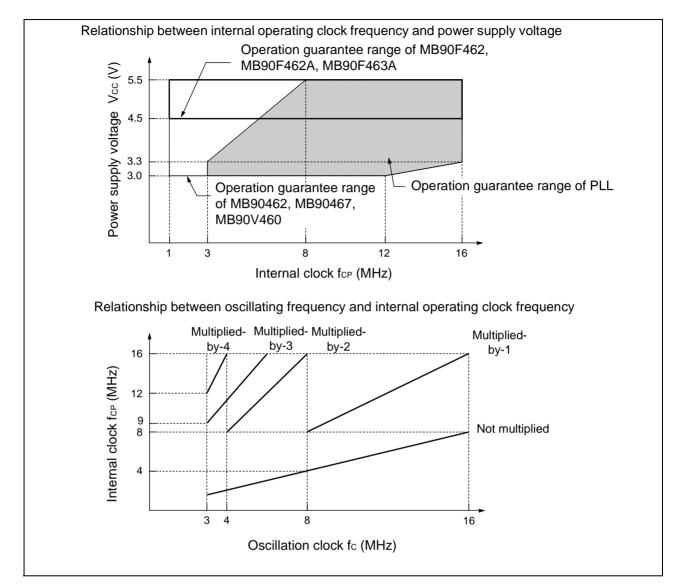
$(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V,$								(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
i arameter	Symbol	i ili name	Condition	Min.	Тур.	Max.	Onit	Remarks
"H" level output voltage	Vон	All output pins	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5			V	
"L" level output	Vol1	All pins except P00 ~ P05 and P30 ~ P35	$V_{CC} = 4.5 \text{ V},$ $I_{OL1} = 4.0 \text{ mA}$			0.4	V	
voltage	Vol2	P00 ~ P05 P30 ~ P35	Vcc = 4.5 V, IoL2 = 12.0 mA		_	0.4	V	
	Vін	P00 ~ P07 P30 ~ P37 P50 ~ P57		0.7 Vcc		Vcc+0.3	V	CMOS input pin
"H" level input voltage	Vins	P10 ~ P17 P20 ~ P27 P40 ~ P46 <u>P60</u> ~ P63 RST	Vcc = 3.0V ~ 5.5V (MB90462,	0.8 Vcc		Vcc + 0.3	V	CMOS hysteresis input pin
	Vінм	MD0 ~ 2	MB90467)	Vcc - 0.3		Vcc + 0.3	V	Mode input pin
	VIL	P00 ~ P07 P30 ~ P37 P50 ~ P57	Vcc = 4.5V ~ 5.5V (MB90F462, MB90F462A,	Vss - 0.3		0.3 Vcc	V	CMOS input pin
"L" level input voltage	Vils	P10 ~ P17 P20 ~ P27 P40 ~ P46 <u>P60</u> ~ P63 RST	MB90F463A)	Vss – 0.3		0.2 Vcc	V	CMOS hysteresis input pin
	VILM	MD0 ~ 2		Vss - 0.3		Vss + 0.3	V	Mode pin input
Input leakage current	Iι∟	All input pins	Vcc = 5.5 V, Vss < VI< Vcc	-5		5	μA	

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

Demonster	O week al	D :	O a maliti a m		Value		11	Domonico
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
			$V_{CC} = 5.0 V,$ Internal operation		40	50	mA	MB90462, MB90467
			at 16 MHz, Normal operation		30	50	mA	MB90F462, MB90F462A, MB90F463A
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internal operation at 16 MHz, When data is written in flash mode (erasing or programming)	_	45	60	mA	MB90F462, MB90F462A, MB90F463A
	lccs	-	$V_{cc} = 5.0 V,$ Internal operation at 16 MHz, In sleep mode	_	15	25	mA	MB90462, MB90467, MB90F462, MB90F462A, MB90F463A
Power supply current*	Ісст	- Vcc	$V_{cc} = 5.0 V$, Internal operation at 16 MHz, In timer mode, $T_A = 25 \ ^{\circ}C$	_	2.5	5.0	mA	MB90462, MB90467, MB90F462, MB90F462A, MB90F463A
current	Іссн		In stop mode, T _A = 25 °C	_	5	20	μΑ	MB90462, MB90467, MB90F462, MB90F462A, MB90F463A
Input capacitance	Cin	Except AVcc, AVss, C, Vcc and Vss	_		10	80	pF	
Pull-up resistance	Rup	P00 to P07 P10 to P17 RST	_	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ	

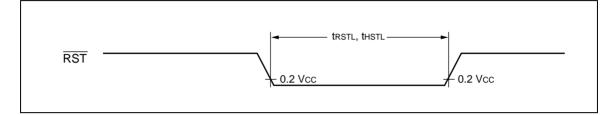

* : The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.


4. AC Characteristics


(1) Clock Timings

			(Vc	c = 5.0 V	±10%, Vs	s = AVss	= 0.0 \	/, $T_A = -40 \ ^\circ C$ to +85 $^\circ C$)
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farameter	Symbol		Condition	Min.	Тур.	Max.	Unit	itemaiks
Clock frequency	fc	X0, X1		3		16	MHz	
Clock cycle time	t HCYL	X0, X1		62.5		333	ns	
Frequency fluctuation rate	Δf					5	%	
Input clock pulse width	Р _{WH} РwL	X0	_	10		_	ns	Recommened duty ratio of 30% to 70%
Input clock rise / fall time	tcr tcr	X0	—			5	ns	External clock operation
Internal operating	fср		_	1.5		16	MHz	Main clock operation
Internal operating clock cycle time	tcp			62.5		666	ns	Main clock operation

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

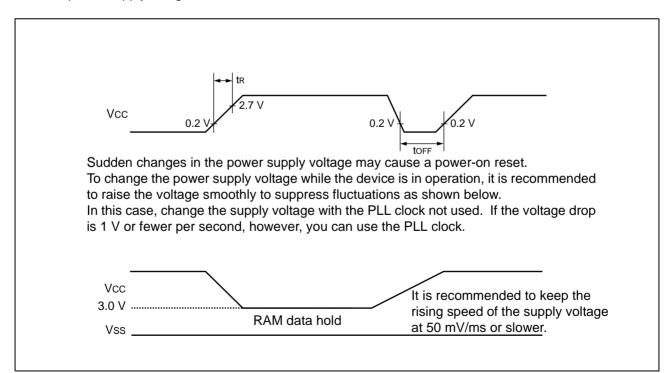

The AC ratings are measured for the following measurement reference voltages

Input signal waveform	Output signal waveform
Hysteresis input pin 0.8 Vcc 0.2 Vcc	Output pin 2.4 V 0.8 V
Pins other than hysteresis input/MD input 0.7 Vcc 0.3 Vcc	

(2) Reset Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	name Condition Value Un		Unit	Remarks		
Falailietei	Symbol	i ili liame	Condition	Min.	Max.	Onic	itema ka	
Reset input time	t rstl	RST		4 t CP	_	ns		


(3) Power-on Reset

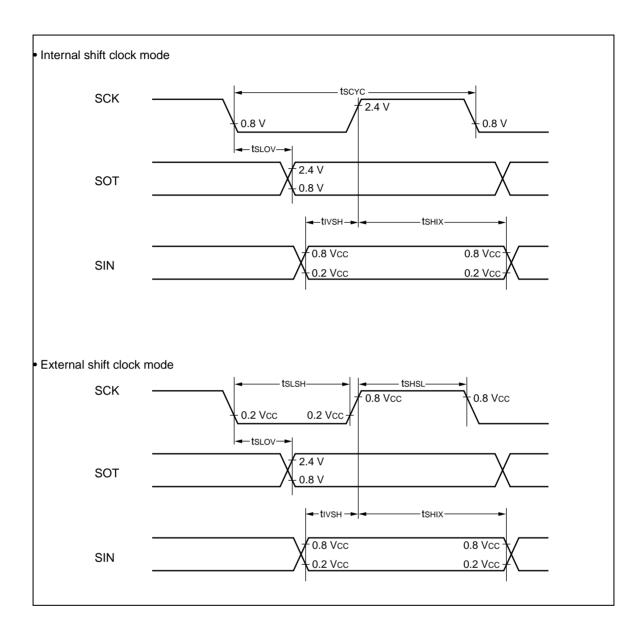
(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falametei	Symbol	FIII Hallie	Condition	Min.	Max.	Unit	Remarks
Power supply rising time	tR	Vcc		0.05	30	ms	
Power supply cut-off time	toff	Vcc		4		ms	Due to repeated operations

* : Vcc must be kept lower than 0.2 V before power-on.

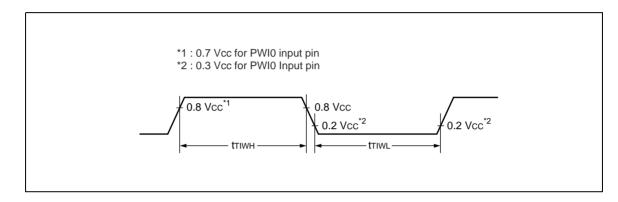
Note The above values are used for causing a power-on reset. Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn the power supply using the above values.

(4) UART0 to UART1


Parameter	Symbol Pin name		Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK1		8 t c₽		ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK0 to SCK1 SOT0 to SOT1	C∟ = 80 pF + 1 TTL for an output pin of	-80	80	ns	
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCK0 to SCK1 SIN0 to SIN1	internal shift clock	100		ns	
$SCK \uparrow \to valid SIN hold time$	tsнıx	SCK0 to SCK1 SIN0 to SIN1		60		ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK1		4 tcp		ns	
Serial clock "L" pulse width	t s∟sн	SCK0 to SCK1	_	4 tcp		ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK0 to SCK1 SOT0 to SOT1	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$ for an output pin of		150	ns	
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCK0 to SCK1 SIN0 to SIN1	external shift clock mode	60		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	SCK0 to SCK1 SIN0 to SIN1		60		ns	

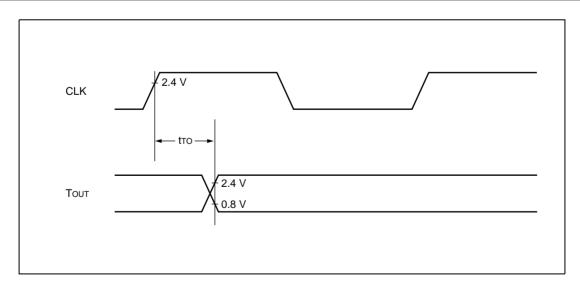
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ } \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Note : • These are AC ratings in the CLK synchronous mode.

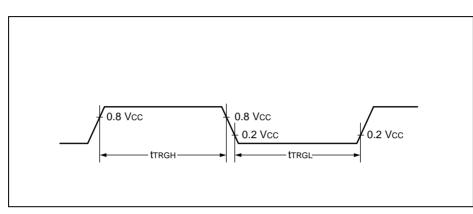

• CL is the load capacitance value connected to pins while testing.

• tcp is machine cycle time (unit:ns).

(5) Resources Input Timing


(-,	5	(\	$v_{cc} = 5.0 \text{ V} \pm 109$	%, Vss = AVss	$s = 0.0 V, T_{e}$	$a = -40^{\circ}$	°C to +85 °C
Deremeter	Symbol	Pin name	Condition	Va	lue	Unit	Bomorko
Parameter	Зупрог	Pin name	Condition	Min.	Max.	Onit	Remarks
Input pulse width	tтıwн tтıw∟	IN0 to IN3 SNI0 to SNI3 TIN0 to TIN1 PWI0 to PWI1 DTTI0, DTTI1		4 tcp		ns	

(6) Resources Output Timing


(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

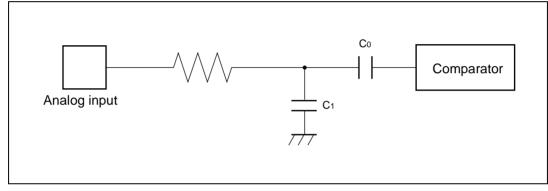
Parameter	Symbol	DI Pin name Condition		Va	lue	Unit	Remarks	
Faiailielei	Symbol	Fiirnaine	Condition	Min.	Max.	Om	itemaiks	
$CLK^{\uparrow} \rightarrow T_{OUT}$ transition time	tто	PWO0 to PWO1 PPG0 to PPG2 TO0 to TO1	_	30	_	ns		

(8) Trigger Input Timimg

	1	(v = 3.0 v = 107	0, 000 - 7000	0 - 0.0 V, T			
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Falameter	ameter Symbol				Max.	Unit	itema ka	
Input pulse width	ttrgh ttrgl	INT0 to INT7		5 tcp		ns		

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

5. A/D Converter Electrical Characteristics

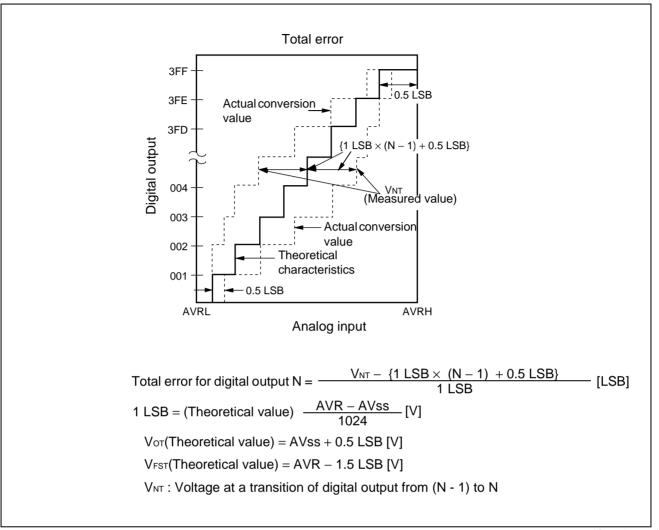

Doromotor	Symbol	Pin		Value		Unit	Remarks
Parameter	Symbol	name	Min.	Тур.	Max.	Unit	Rellidiks
Resolution				10		bit	
Total error				_	±3.0	LSB	For MB90F462, MB90F462A, MB90F463A, MB90462, MB90467
					±5.0	LSB	For MB90V460
Non-linear error				—	±2.5	LSB	
Differential linearity error					±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	For MB90F462, MB90F462A, MB90F463A, MB90462, MB90467
voltage			AVss – 3.5 LSB	AVss + 0.5 LSB	AVss + 4.5 LSB	mV	For MB90V460
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	mV	For MB90F462, MB90F462A, MB90F463A, MB90462, MB90467
transmon voltage		AN7	AVR – 6.5 LSB	AVR – 1.5 LSB	AVR + 1.5 LSB	mV	For MB90V460
Conversion time			6.125		1000	μs	For MB90V460, MB90F462, MB90F462A, MB90F463A, MB90467. Actual value is specified as a sum of values specified in ADCR0 : CT1, CT0 and ADCR0 : ST1, ST0. Be sure that the setting value is greated than the min value
Sampling period			2	_		μs	Actual value is specified in ADCR0 : ST1, ST0 bits. Be sure that the setting value is greater than the min value
Analog port input current	Iain	AN0 to AN7			10	μA	
Analog input voltage	VAIN	AN0 to AN7	AVss		AVR	V	
Reference voltage	—	AVR	AVss + 2.7		AVcc	V	
Power supply	IA	AVcc	_	2.3	6	mA	For MB90F462, MB90F462A, MB90F463A, MB90462, MB90467
current				2	5	mA	For MB90V460
	IAH*				5	μΑ	*

 $(3.0 \text{ V} \le \text{AVR} - \text{AVss}, \text{Vcc} = \text{AVcc} = 5.0 \text{ V} \pm 10\%, \text{Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to} + 85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Тур.	Max.	Unit	Remarks
Reference voltage supply current	Ir	AVR		140	260	μA	For MB90F462, MB90462, MB90467
			_	600	900	μΑ	For MB90F462A, MB90F463A
			_	0.9	1.3	mA	For MB90V460
	IRH [*]		_		5	μΑ	*
Offset between channels	_	AN0 to AN7			4	LSB	

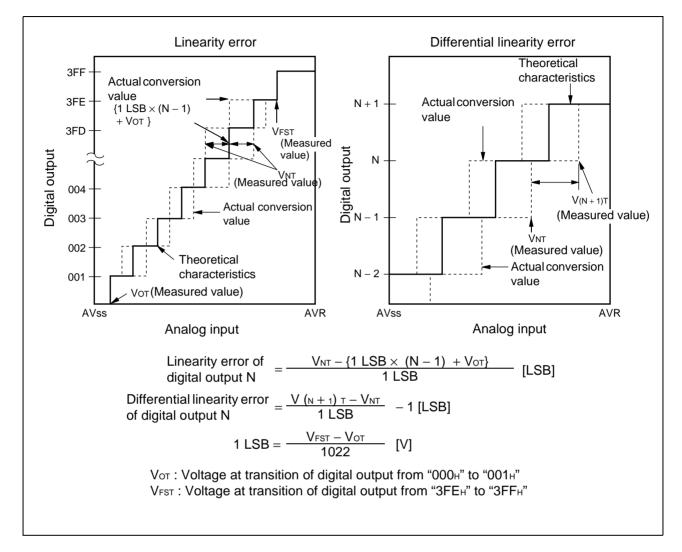
* : The current when the A/D converter is not operating or the CPU is in stop mode (for Vcc = AVcc = AVR = 5.0 V)

- Note: The error increases proportionally as |AVR AVss| decreases.
 - •The output impedance of the external circuits connected to the analog inputs should be in the following range.
 - •The output impedance of the external circuit : TBD
 - •If the output impedance of the external circuit is too high, the sampling time might be insufficient.


6. A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter

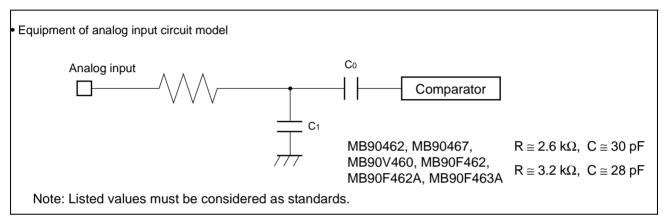
Linearity error : The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics


Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

(Continued)

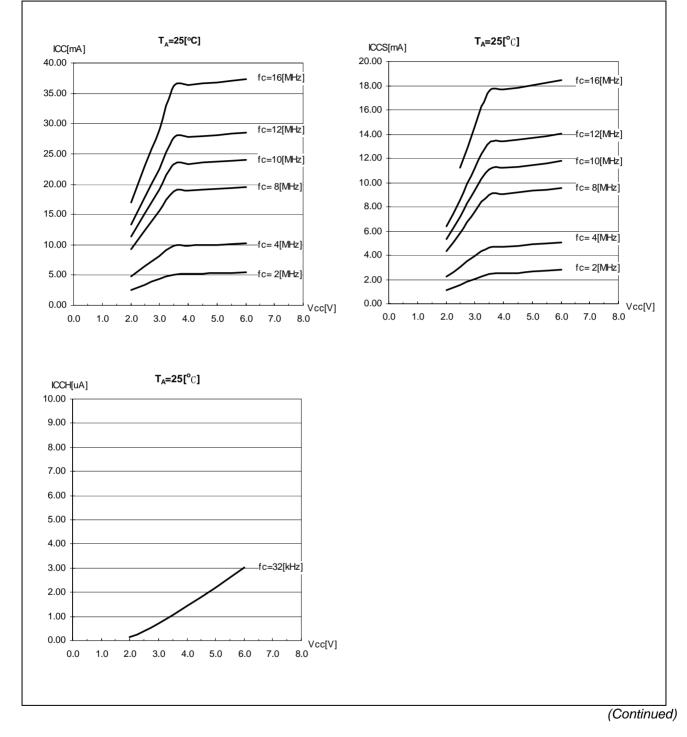

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions.

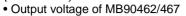
Output impedance values of the external circuit of 5 k Ω or lower are recommended.

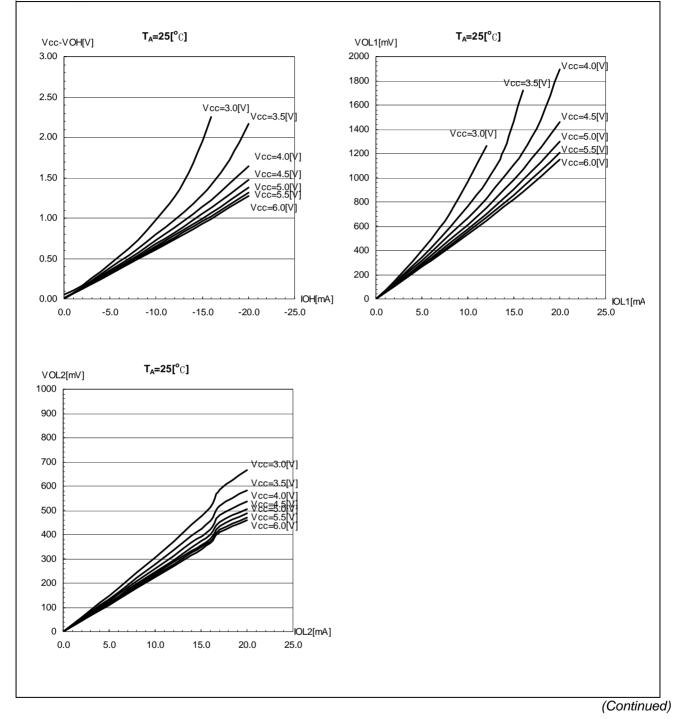
When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @ machine clock of 16 MHz).

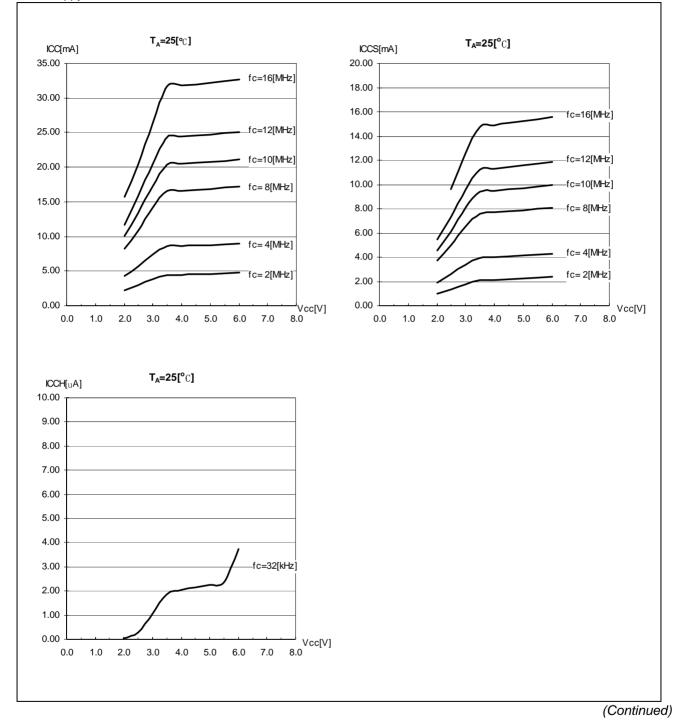


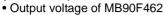
• Error

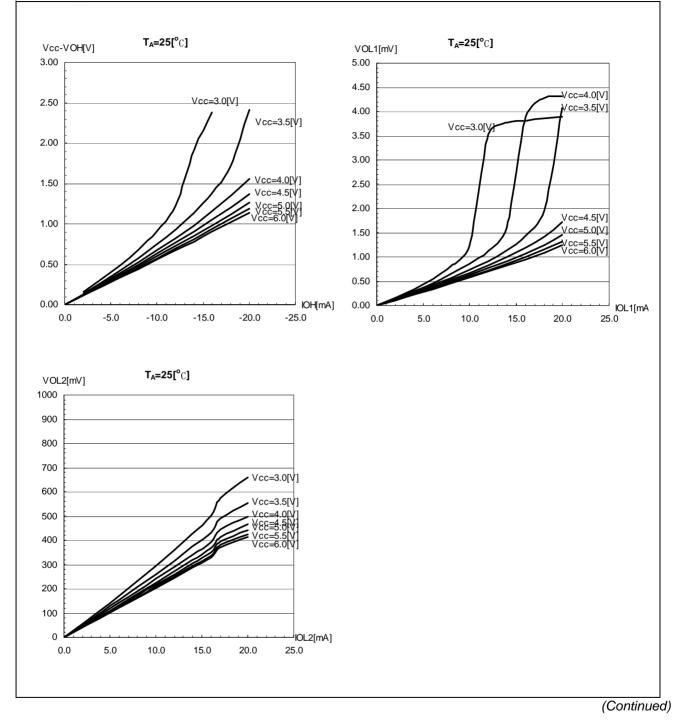

The smaller the | AVR - AVss |, the greater the error would become relatively.


■ EXAMPLE CHARACTERISTICS

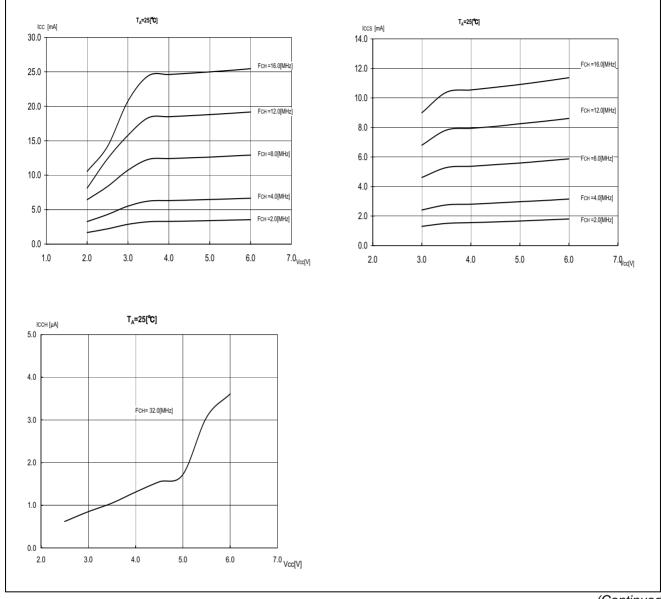
• Power suppy current of MB90462/467

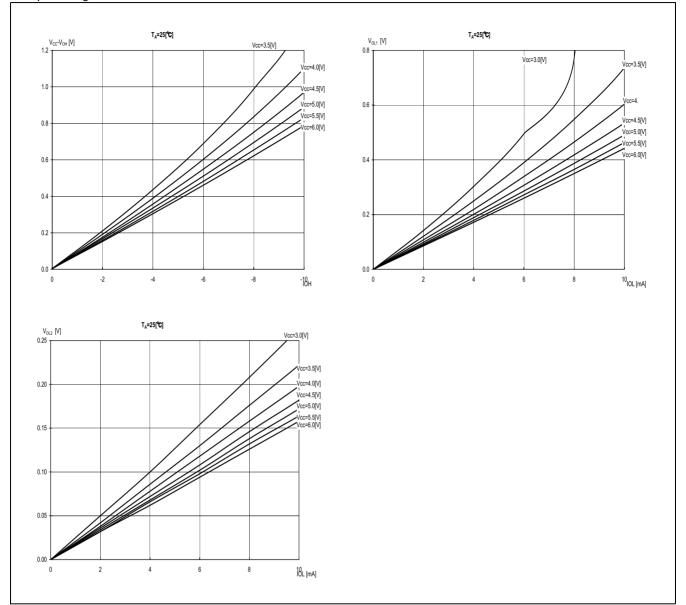

(Continued)




(Continued)

• Power suppy current of MB90F462

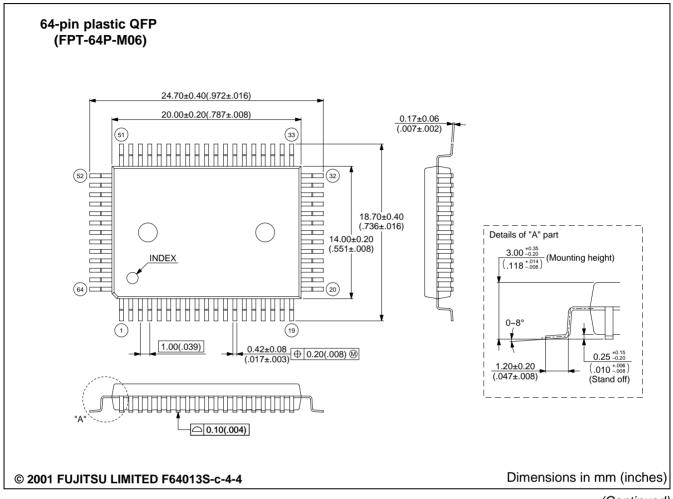

(Continued)


(Continued)

• Power supply current of MB90F462A/F463A

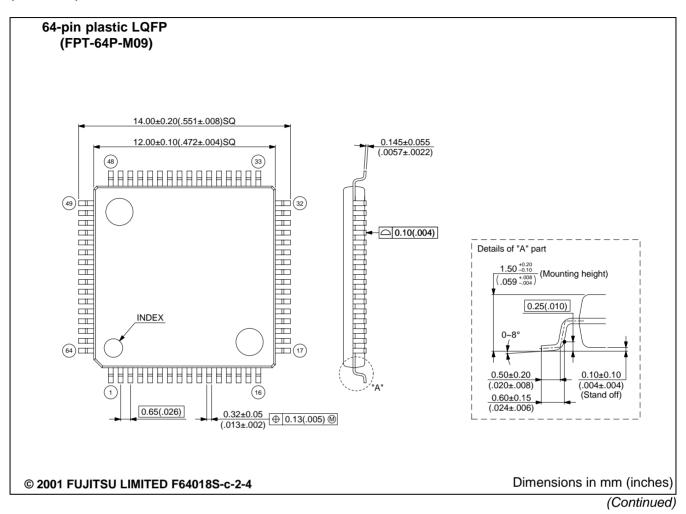
(Continued)

Output voltage of MB90F462A/F463A

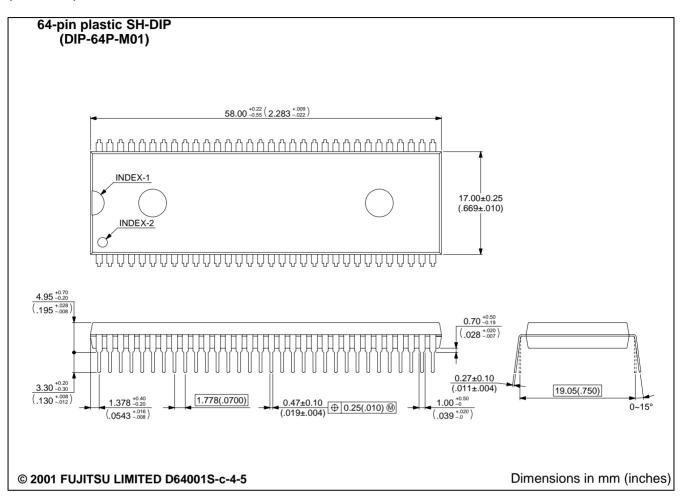


■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F462PFM-G MB90F462APFM-G MB90F463APFM-G MB90462PFM-G-XXX MB90467PFM-G-XXX	64-pin Plastic LQFP (FPT-64P-M09)	
MB90F462PF-G MB90F462APF-G MB90F463APF-G MB90462PF-G-XXX MB90467PF-G-XXX	64-pin Plastic QFP (FPT-64P-M06)	
MB90F462P-G-SH MB90F462AP-G-SH MB90F463AP-G-SH MB90462P-G-XXX-SH MB90467P-G-XXX-SH	64-pin Plastic SH-DIP (DIP-64P-M01)	


Note : XXX is the internal reference number for ROM code release.

■ PACKAGE DIMENSIONS



(Continued)

(Continued)

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3353 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

F0208 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.